Metamath Proof Explorer


Theorem occon2

Description: Double contraposition for orthogonal complement. (Contributed by NM, 22-Jul-2001) (New usage is discouraged.)

Ref Expression
Assertion occon2 ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴𝐵 → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 ocss ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ )
2 ocss ( 𝐵 ⊆ ℋ → ( ⊥ ‘ 𝐵 ) ⊆ ℋ )
3 1 2 anim12ci ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( ( ⊥ ‘ 𝐵 ) ⊆ ℋ ∧ ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) )
4 occon ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴𝐵 → ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) )
5 occon ( ( ( ⊥ ‘ 𝐵 ) ⊆ ℋ ∧ ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) → ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) )
6 3 4 5 sylsyld ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴𝐵 → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) )