Step |
Hyp |
Ref |
Expression |
1 |
|
ocval |
⊢ ( 𝐻 ⊆ ℋ → ( ⊥ ‘ 𝐻 ) = { 𝑦 ∈ ℋ ∣ ∀ 𝑥 ∈ 𝐻 ( 𝑦 ·ih 𝑥 ) = 0 } ) |
2 |
1
|
eleq2d |
⊢ ( 𝐻 ⊆ ℋ → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ 𝐴 ∈ { 𝑦 ∈ ℋ ∣ ∀ 𝑥 ∈ 𝐻 ( 𝑦 ·ih 𝑥 ) = 0 } ) ) |
3 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ·ih 𝑥 ) = ( 𝐴 ·ih 𝑥 ) ) |
4 |
3
|
eqeq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ·ih 𝑥 ) = 0 ↔ ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
5 |
4
|
ralbidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ 𝐻 ( 𝑦 ·ih 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ 𝐻 ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
6 |
5
|
elrab |
⊢ ( 𝐴 ∈ { 𝑦 ∈ ℋ ∣ ∀ 𝑥 ∈ 𝐻 ( 𝑦 ·ih 𝑥 ) = 0 } ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐻 ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
7 |
2 6
|
bitrdi |
⊢ ( 𝐻 ⊆ ℋ → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐻 ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |