| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							shocel | 
							⊢ ( 𝐴  ∈   Sℋ   →  ( 𝑥  ∈  ( ⊥ ‘ 𝐴 )  ↔  ( 𝑥  ∈   ℋ  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑥  ·ih  𝑦 )  =  0 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝑥  ·ih  𝑦 )  =  ( 𝑥  ·ih  𝑥 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							eqeq1d | 
							⊢ ( 𝑦  =  𝑥  →  ( ( 𝑥  ·ih  𝑦 )  =  0  ↔  ( 𝑥  ·ih  𝑥 )  =  0 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							rspccv | 
							⊢ ( ∀ 𝑦  ∈  𝐴 ( 𝑥  ·ih  𝑦 )  =  0  →  ( 𝑥  ∈  𝐴  →  ( 𝑥  ·ih  𝑥 )  =  0 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							his6 | 
							⊢ ( 𝑥  ∈   ℋ  →  ( ( 𝑥  ·ih  𝑥 )  =  0  ↔  𝑥  =  0ℎ ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							biimpd | 
							⊢ ( 𝑥  ∈   ℋ  →  ( ( 𝑥  ·ih  𝑥 )  =  0  →  𝑥  =  0ℎ ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							sylan9r | 
							⊢ ( ( 𝑥  ∈   ℋ  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑥  ·ih  𝑦 )  =  0 )  →  ( 𝑥  ∈  𝐴  →  𝑥  =  0ℎ ) )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							biimtrdi | 
							⊢ ( 𝐴  ∈   Sℋ   →  ( 𝑥  ∈  ( ⊥ ‘ 𝐴 )  →  ( 𝑥  ∈  𝐴  →  𝑥  =  0ℎ ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							com23 | 
							⊢ ( 𝐴  ∈   Sℋ   →  ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  ( ⊥ ‘ 𝐴 )  →  𝑥  =  0ℎ ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							impd | 
							⊢ ( 𝐴  ∈   Sℋ   →  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  ( ⊥ ‘ 𝐴 ) )  →  𝑥  =  0ℎ ) )  | 
						
						
							| 11 | 
							
								
							 | 
							sh0 | 
							⊢ ( 𝐴  ∈   Sℋ   →  0ℎ  ∈  𝐴 )  | 
						
						
							| 12 | 
							
								
							 | 
							oc0 | 
							⊢ ( 𝐴  ∈   Sℋ   →  0ℎ  ∈  ( ⊥ ‘ 𝐴 ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							jca | 
							⊢ ( 𝐴  ∈   Sℋ   →  ( 0ℎ  ∈  𝐴  ∧  0ℎ  ∈  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑥  =  0ℎ  →  ( 𝑥  ∈  𝐴  ↔  0ℎ  ∈  𝐴 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑥  =  0ℎ  →  ( 𝑥  ∈  ( ⊥ ‘ 𝐴 )  ↔  0ℎ  ∈  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							anbi12d | 
							⊢ ( 𝑥  =  0ℎ  →  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  ( ⊥ ‘ 𝐴 ) )  ↔  ( 0ℎ  ∈  𝐴  ∧  0ℎ  ∈  ( ⊥ ‘ 𝐴 ) ) ) )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							syl5ibrcom | 
							⊢ ( 𝐴  ∈   Sℋ   →  ( 𝑥  =  0ℎ  →  ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  ( ⊥ ‘ 𝐴 ) ) ) )  | 
						
						
							| 18 | 
							
								10 17
							 | 
							impbid | 
							⊢ ( 𝐴  ∈   Sℋ   →  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  ( ⊥ ‘ 𝐴 ) )  ↔  𝑥  =  0ℎ ) )  | 
						
						
							| 19 | 
							
								
							 | 
							elin | 
							⊢ ( 𝑥  ∈  ( 𝐴  ∩  ( ⊥ ‘ 𝐴 ) )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							elch0 | 
							⊢ ( 𝑥  ∈  0ℋ  ↔  𝑥  =  0ℎ )  | 
						
						
							| 21 | 
							
								18 19 20
							 | 
							3bitr4g | 
							⊢ ( 𝐴  ∈   Sℋ   →  ( 𝑥  ∈  ( 𝐴  ∩  ( ⊥ ‘ 𝐴 ) )  ↔  𝑥  ∈  0ℋ ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							eqrdv | 
							⊢ ( 𝐴  ∈   Sℋ   →  ( 𝐴  ∩  ( ⊥ ‘ 𝐴 ) )  =  0ℋ )  |