| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elin | 
							⊢ ( 𝐴  ∈  ( 𝐻  ∩  ( ⊥ ‘ 𝐻 ) )  ↔  ( 𝐴  ∈  𝐻  ∧  𝐴  ∈  ( ⊥ ‘ 𝐻 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							ocin | 
							⊢ ( 𝐻  ∈   Sℋ   →  ( 𝐻  ∩  ( ⊥ ‘ 𝐻 ) )  =  0ℋ )  | 
						
						
							| 3 | 
							
								2
							 | 
							eleq2d | 
							⊢ ( 𝐻  ∈   Sℋ   →  ( 𝐴  ∈  ( 𝐻  ∩  ( ⊥ ‘ 𝐻 ) )  ↔  𝐴  ∈  0ℋ ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							biimpd | 
							⊢ ( 𝐻  ∈   Sℋ   →  ( 𝐴  ∈  ( 𝐻  ∩  ( ⊥ ‘ 𝐻 ) )  →  𝐴  ∈  0ℋ ) )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							biimtrrid | 
							⊢ ( 𝐻  ∈   Sℋ   →  ( ( 𝐴  ∈  𝐻  ∧  𝐴  ∈  ( ⊥ ‘ 𝐻 ) )  →  𝐴  ∈  0ℋ ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							expcomd | 
							⊢ ( 𝐻  ∈   Sℋ   →  ( 𝐴  ∈  ( ⊥ ‘ 𝐻 )  →  ( 𝐴  ∈  𝐻  →  𝐴  ∈  0ℋ ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							imp | 
							⊢ ( ( 𝐻  ∈   Sℋ   ∧  𝐴  ∈  ( ⊥ ‘ 𝐻 ) )  →  ( 𝐴  ∈  𝐻  →  𝐴  ∈  0ℋ ) )  | 
						
						
							| 8 | 
							
								
							 | 
							elch0 | 
							⊢ ( 𝐴  ∈  0ℋ  ↔  𝐴  =  0ℎ )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							imbitrdi | 
							⊢ ( ( 𝐻  ∈   Sℋ   ∧  𝐴  ∈  ( ⊥ ‘ 𝐻 ) )  →  ( 𝐴  ∈  𝐻  →  𝐴  =  0ℎ ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							necon3ad | 
							⊢ ( ( 𝐻  ∈   Sℋ   ∧  𝐴  ∈  ( ⊥ ‘ 𝐻 ) )  →  ( 𝐴  ≠  0ℎ  →  ¬  𝐴  ∈  𝐻 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							3impia | 
							⊢ ( ( 𝐻  ∈   Sℋ   ∧  𝐴  ∈  ( ⊥ ‘ 𝐻 )  ∧  𝐴  ≠  0ℎ )  →  ¬  𝐴  ∈  𝐻 )  |