Description: Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of Beran p. 102. (Contributed by NM, 11-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ococ | ⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fveq3 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = ( ⊥ ‘ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) ) | |
2 | id | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) | |
3 | 1 2 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 ↔ ( ⊥ ‘ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) |
4 | ifchhv | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∈ Cℋ | |
5 | 4 | ococi | ⊢ ( ⊥ ‘ ( ⊥ ‘ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ) ) = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) |
6 | 3 5 | dedth | ⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 ) |