Metamath Proof Explorer


Theorem ococ

Description: Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of Beran p. 102. (Contributed by NM, 11-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion ococ ( 𝐴C → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 2fveq3 ( 𝐴 = if ( 𝐴C , 𝐴 , ℋ ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = ( ⊥ ‘ ( ⊥ ‘ if ( 𝐴C , 𝐴 , ℋ ) ) ) )
2 id ( 𝐴 = if ( 𝐴C , 𝐴 , ℋ ) → 𝐴 = if ( 𝐴C , 𝐴 , ℋ ) )
3 1 2 eqeq12d ( 𝐴 = if ( 𝐴C , 𝐴 , ℋ ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 ↔ ( ⊥ ‘ ( ⊥ ‘ if ( 𝐴C , 𝐴 , ℋ ) ) ) = if ( 𝐴C , 𝐴 , ℋ ) ) )
4 ifchhv if ( 𝐴C , 𝐴 , ℋ ) ∈ C
5 4 ococi ( ⊥ ‘ ( ⊥ ‘ if ( 𝐴C , 𝐴 , ℋ ) ) ) = if ( 𝐴C , 𝐴 , ℋ )
6 3 5 dedth ( 𝐴C → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 )