| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ococ.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
1
|
chshii |
⊢ 𝐴 ∈ Sℋ |
| 3 |
|
shocsh |
⊢ ( 𝐴 ∈ Sℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |
| 4 |
2 3
|
ax-mp |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Sℋ |
| 5 |
|
shocsh |
⊢ ( ( ⊥ ‘ 𝐴 ) ∈ Sℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ Sℋ ) |
| 6 |
4 5
|
ax-mp |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ Sℋ |
| 7 |
|
shococss |
⊢ ( 𝐴 ∈ Sℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
| 8 |
2 7
|
ax-mp |
⊢ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) |
| 9 |
|
incom |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
| 10 |
|
ocin |
⊢ ( ( ⊥ ‘ 𝐴 ) ∈ Sℋ → ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0ℋ ) |
| 11 |
4 10
|
ax-mp |
⊢ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0ℋ |
| 12 |
9 11
|
eqtri |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ |
| 13 |
1 6 8 12
|
omlsii |
⊢ 𝐴 = ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) |
| 14 |
13
|
eqcomi |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 |