Metamath Proof Explorer


Theorem ococi

Description: Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of Beran p. 102. (Contributed by NM, 11-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis ococ.1 𝐴C
Assertion ococi ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴

Proof

Step Hyp Ref Expression
1 ococ.1 𝐴C
2 1 chshii 𝐴S
3 shocsh ( 𝐴S → ( ⊥ ‘ 𝐴 ) ∈ S )
4 2 3 ax-mp ( ⊥ ‘ 𝐴 ) ∈ S
5 shocsh ( ( ⊥ ‘ 𝐴 ) ∈ S → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ S )
6 4 5 ax-mp ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ S
7 shococss ( 𝐴S𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )
8 2 7 ax-mp 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )
9 incom ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )
10 ocin ( ( ⊥ ‘ 𝐴 ) ∈ S → ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0 )
11 4 10 ax-mp ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0
12 9 11 eqtri ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐴 ) ) = 0
13 1 6 8 12 omlsii 𝐴 = ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )
14 13 eqcomi ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴