Metamath Proof Explorer


Theorem ococin

Description: The double complement is the smallest closed subspace containing a subset of Hilbert space. Remark 3.12(B) of Beran p. 107. (Contributed by NM, 8-Aug-2000) (New usage is discouraged.)

Ref Expression
Assertion ococin ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = { 𝑥C𝐴𝑥 } )

Proof

Step Hyp Ref Expression
1 helch ℋ ∈ C
2 1 jctl ( 𝐴 ⊆ ℋ → ( ℋ ∈ C𝐴 ⊆ ℋ ) )
3 sseq2 ( 𝑥 = ℋ → ( 𝐴𝑥𝐴 ⊆ ℋ ) )
4 3 elrab ( ℋ ∈ { 𝑥C𝐴𝑥 } ↔ ( ℋ ∈ C𝐴 ⊆ ℋ ) )
5 2 4 sylibr ( 𝐴 ⊆ ℋ → ℋ ∈ { 𝑥C𝐴𝑥 } )
6 intss1 ( ℋ ∈ { 𝑥C𝐴𝑥 } → { 𝑥C𝐴𝑥 } ⊆ ℋ )
7 5 6 syl ( 𝐴 ⊆ ℋ → { 𝑥C𝐴𝑥 } ⊆ ℋ )
8 ocss ( { 𝑥C𝐴𝑥 } ⊆ ℋ → ( ⊥ ‘ { 𝑥C𝐴𝑥 } ) ⊆ ℋ )
9 7 8 syl ( 𝐴 ⊆ ℋ → ( ⊥ ‘ { 𝑥C𝐴𝑥 } ) ⊆ ℋ )
10 ocss ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ )
11 9 10 jca ( 𝐴 ⊆ ℋ → ( ( ⊥ ‘ { 𝑥C𝐴𝑥 } ) ⊆ ℋ ∧ ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) )
12 ssintub 𝐴 { 𝑥C𝐴𝑥 }
13 occon ( ( 𝐴 ⊆ ℋ ∧ { 𝑥C𝐴𝑥 } ⊆ ℋ ) → ( 𝐴 { 𝑥C𝐴𝑥 } → ( ⊥ ‘ { 𝑥C𝐴𝑥 } ) ⊆ ( ⊥ ‘ 𝐴 ) ) )
14 7 13 mpdan ( 𝐴 ⊆ ℋ → ( 𝐴 { 𝑥C𝐴𝑥 } → ( ⊥ ‘ { 𝑥C𝐴𝑥 } ) ⊆ ( ⊥ ‘ 𝐴 ) ) )
15 12 14 mpi ( 𝐴 ⊆ ℋ → ( ⊥ ‘ { 𝑥C𝐴𝑥 } ) ⊆ ( ⊥ ‘ 𝐴 ) )
16 occon ( ( ( ⊥ ‘ { 𝑥C𝐴𝑥 } ) ⊆ ℋ ∧ ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) → ( ( ⊥ ‘ { 𝑥C𝐴𝑥 } ) ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝑥C𝐴𝑥 } ) ) ) )
17 11 15 16 sylc ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝑥C𝐴𝑥 } ) ) )
18 ssrab2 { 𝑥C𝐴𝑥 } ⊆ C
19 3 rspcev ( ( ℋ ∈ C𝐴 ⊆ ℋ ) → ∃ 𝑥C 𝐴𝑥 )
20 1 19 mpan ( 𝐴 ⊆ ℋ → ∃ 𝑥C 𝐴𝑥 )
21 rabn0 ( { 𝑥C𝐴𝑥 } ≠ ∅ ↔ ∃ 𝑥C 𝐴𝑥 )
22 20 21 sylibr ( 𝐴 ⊆ ℋ → { 𝑥C𝐴𝑥 } ≠ ∅ )
23 chintcl ( ( { 𝑥C𝐴𝑥 } ⊆ C ∧ { 𝑥C𝐴𝑥 } ≠ ∅ ) → { 𝑥C𝐴𝑥 } ∈ C )
24 18 22 23 sylancr ( 𝐴 ⊆ ℋ → { 𝑥C𝐴𝑥 } ∈ C )
25 ococ ( { 𝑥C𝐴𝑥 } ∈ C → ( ⊥ ‘ ( ⊥ ‘ { 𝑥C𝐴𝑥 } ) ) = { 𝑥C𝐴𝑥 } )
26 24 25 syl ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ { 𝑥C𝐴𝑥 } ) ) = { 𝑥C𝐴𝑥 } )
27 17 26 sseqtrd ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ { 𝑥C𝐴𝑥 } )
28 occl ( ( ⊥ ‘ 𝐴 ) ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ C )
29 10 28 syl ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ C )
30 ococss ( 𝐴 ⊆ ℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )
31 sseq2 ( 𝑥 = ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) → ( 𝐴𝑥𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) )
32 31 elrab ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ { 𝑥C𝐴𝑥 } ↔ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ C𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) )
33 29 30 32 sylanbrc ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ { 𝑥C𝐴𝑥 } )
34 intss1 ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ { 𝑥C𝐴𝑥 } → { 𝑥C𝐴𝑥 } ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )
35 33 34 syl ( 𝐴 ⊆ ℋ → { 𝑥C𝐴𝑥 } ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )
36 27 35 eqssd ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = { 𝑥C𝐴𝑥 } )