Step |
Hyp |
Ref |
Expression |
1 |
|
helch |
⊢ ℋ ∈ Cℋ |
2 |
1
|
jctl |
⊢ ( 𝐴 ⊆ ℋ → ( ℋ ∈ Cℋ ∧ 𝐴 ⊆ ℋ ) ) |
3 |
|
sseq2 |
⊢ ( 𝑥 = ℋ → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ℋ ) ) |
4 |
3
|
elrab |
⊢ ( ℋ ∈ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ↔ ( ℋ ∈ Cℋ ∧ 𝐴 ⊆ ℋ ) ) |
5 |
2 4
|
sylibr |
⊢ ( 𝐴 ⊆ ℋ → ℋ ∈ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) |
6 |
|
intss1 |
⊢ ( ℋ ∈ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } → ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ ℋ ) |
7 |
5 6
|
syl |
⊢ ( 𝐴 ⊆ ℋ → ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ ℋ ) |
8 |
|
ocss |
⊢ ( ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ ℋ → ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ⊆ ℋ ) |
9 |
7 8
|
syl |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ⊆ ℋ ) |
10 |
|
ocss |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) |
11 |
9 10
|
jca |
⊢ ( 𝐴 ⊆ ℋ → ( ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ⊆ ℋ ∧ ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) ) |
12 |
|
ssintub |
⊢ 𝐴 ⊆ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } |
13 |
|
occon |
⊢ ( ( 𝐴 ⊆ ℋ ∧ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ ℋ ) → ( 𝐴 ⊆ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } → ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
14 |
7 13
|
mpdan |
⊢ ( 𝐴 ⊆ ℋ → ( 𝐴 ⊆ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } → ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
15 |
12 14
|
mpi |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ⊆ ( ⊥ ‘ 𝐴 ) ) |
16 |
|
occon |
⊢ ( ( ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ⊆ ℋ ∧ ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) → ( ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ) ) ) |
17 |
11 15 16
|
sylc |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ) ) |
18 |
|
ssrab2 |
⊢ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ Cℋ |
19 |
3
|
rspcev |
⊢ ( ( ℋ ∈ Cℋ ∧ 𝐴 ⊆ ℋ ) → ∃ 𝑥 ∈ Cℋ 𝐴 ⊆ 𝑥 ) |
20 |
1 19
|
mpan |
⊢ ( 𝐴 ⊆ ℋ → ∃ 𝑥 ∈ Cℋ 𝐴 ⊆ 𝑥 ) |
21 |
|
rabn0 |
⊢ ( { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ≠ ∅ ↔ ∃ 𝑥 ∈ Cℋ 𝐴 ⊆ 𝑥 ) |
22 |
20 21
|
sylibr |
⊢ ( 𝐴 ⊆ ℋ → { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ≠ ∅ ) |
23 |
|
chintcl |
⊢ ( ( { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ Cℋ ∧ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ≠ ∅ ) → ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ∈ Cℋ ) |
24 |
18 22 23
|
sylancr |
⊢ ( 𝐴 ⊆ ℋ → ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ∈ Cℋ ) |
25 |
|
ococ |
⊢ ( ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ) = ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) |
26 |
24 25
|
syl |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ) = ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) |
27 |
17 26
|
sseqtrd |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) |
28 |
|
occl |
⊢ ( ( ⊥ ‘ 𝐴 ) ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ Cℋ ) |
29 |
10 28
|
syl |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ Cℋ ) |
30 |
|
ococss |
⊢ ( 𝐴 ⊆ ℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
31 |
|
sseq2 |
⊢ ( 𝑥 = ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
32 |
31
|
elrab |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ↔ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ Cℋ ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
33 |
29 30 32
|
sylanbrc |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) |
34 |
|
intss1 |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } → ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
35 |
33 34
|
syl |
⊢ ( 𝐴 ⊆ ℋ → ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
36 |
27 35
|
eqssd |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) |