Step |
Hyp |
Ref |
Expression |
1 |
|
ssel |
⊢ ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ ) ) |
2 |
|
ocorth |
⊢ ( 𝐴 ⊆ ℋ → ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ) → ( 𝑦 ·ih 𝑥 ) = 0 ) ) |
3 |
2
|
expd |
⊢ ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ ( ⊥ ‘ 𝐴 ) → ( 𝑦 ·ih 𝑥 ) = 0 ) ) ) |
4 |
3
|
ralrimdv |
⊢ ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ 𝐴 → ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑦 ·ih 𝑥 ) = 0 ) ) |
5 |
1 4
|
jcad |
⊢ ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ 𝐴 → ( 𝑦 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑦 ·ih 𝑥 ) = 0 ) ) ) |
6 |
|
ocss |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) |
7 |
|
ocel |
⊢ ( ( ⊥ ‘ 𝐴 ) ⊆ ℋ → ( 𝑦 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ↔ ( 𝑦 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑦 ·ih 𝑥 ) = 0 ) ) ) |
8 |
6 7
|
syl |
⊢ ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ↔ ( 𝑦 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑦 ·ih 𝑥 ) = 0 ) ) ) |
9 |
5 8
|
sylibrd |
⊢ ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
10 |
9
|
ssrdv |
⊢ ( 𝐴 ⊆ ℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |