Step |
Hyp |
Ref |
Expression |
1 |
|
ocel |
⊢ ( 𝐻 ⊆ ℋ → ( 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( 𝐵 ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐻 ( 𝐵 ·ih 𝑥 ) = 0 ) ) ) |
2 |
1
|
simplbda |
⊢ ( ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ∀ 𝑥 ∈ 𝐻 ( 𝐵 ·ih 𝑥 ) = 0 ) |
3 |
2
|
adantl |
⊢ ( ( ( 𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻 ) ∧ ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ∀ 𝑥 ∈ 𝐻 ( 𝐵 ·ih 𝑥 ) = 0 ) |
4 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐵 ·ih 𝑥 ) = ( 𝐵 ·ih 𝐴 ) ) |
5 |
4
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ·ih 𝑥 ) = 0 ↔ ( 𝐵 ·ih 𝐴 ) = 0 ) ) |
6 |
5
|
rspcv |
⊢ ( 𝐴 ∈ 𝐻 → ( ∀ 𝑥 ∈ 𝐻 ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐵 ·ih 𝐴 ) = 0 ) ) |
7 |
6
|
ad2antlr |
⊢ ( ( ( 𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻 ) ∧ ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ∀ 𝑥 ∈ 𝐻 ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐵 ·ih 𝐴 ) = 0 ) ) |
8 |
|
ssel2 |
⊢ ( ( 𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻 ) → 𝐴 ∈ ℋ ) |
9 |
|
ocss |
⊢ ( 𝐻 ⊆ ℋ → ( ⊥ ‘ 𝐻 ) ⊆ ℋ ) |
10 |
9
|
sselda |
⊢ ( ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝐵 ∈ ℋ ) |
11 |
|
orthcom |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih 𝐴 ) = 0 ) ) |
12 |
8 10 11
|
syl2an |
⊢ ( ( ( 𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻 ) ∧ ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ( 𝐴 ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih 𝐴 ) = 0 ) ) |
13 |
7 12
|
sylibrd |
⊢ ( ( ( 𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻 ) ∧ ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ∀ 𝑥 ∈ 𝐻 ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝐵 ) = 0 ) ) |
14 |
3 13
|
mpd |
⊢ ( ( ( 𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻 ) ∧ ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( 𝐴 ·ih 𝐵 ) = 0 ) |
15 |
14
|
anandis |
⊢ ( ( 𝐻 ⊆ ℋ ∧ ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( 𝐴 ·ih 𝐵 ) = 0 ) |
16 |
15
|
ex |
⊢ ( 𝐻 ⊆ ℋ → ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐴 ·ih 𝐵 ) = 0 ) ) |