Metamath Proof Explorer


Theorem ocorth

Description: Members of a subset and its complement are orthogonal. (Contributed by NM, 9-Aug-2000) (New usage is discouraged.)

Ref Expression
Assertion ocorth ( 𝐻 ⊆ ℋ → ( ( 𝐴𝐻𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐴 ·ih 𝐵 ) = 0 ) )

Proof

Step Hyp Ref Expression
1 ocel ( 𝐻 ⊆ ℋ → ( 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( 𝐵 ∈ ℋ ∧ ∀ 𝑥𝐻 ( 𝐵 ·ih 𝑥 ) = 0 ) ) )
2 1 simplbda ( ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ∀ 𝑥𝐻 ( 𝐵 ·ih 𝑥 ) = 0 )
3 2 adantl ( ( ( 𝐻 ⊆ ℋ ∧ 𝐴𝐻 ) ∧ ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ∀ 𝑥𝐻 ( 𝐵 ·ih 𝑥 ) = 0 )
4 oveq2 ( 𝑥 = 𝐴 → ( 𝐵 ·ih 𝑥 ) = ( 𝐵 ·ih 𝐴 ) )
5 4 eqeq1d ( 𝑥 = 𝐴 → ( ( 𝐵 ·ih 𝑥 ) = 0 ↔ ( 𝐵 ·ih 𝐴 ) = 0 ) )
6 5 rspcv ( 𝐴𝐻 → ( ∀ 𝑥𝐻 ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐵 ·ih 𝐴 ) = 0 ) )
7 6 ad2antlr ( ( ( 𝐻 ⊆ ℋ ∧ 𝐴𝐻 ) ∧ ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ∀ 𝑥𝐻 ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐵 ·ih 𝐴 ) = 0 ) )
8 ssel2 ( ( 𝐻 ⊆ ℋ ∧ 𝐴𝐻 ) → 𝐴 ∈ ℋ )
9 ocss ( 𝐻 ⊆ ℋ → ( ⊥ ‘ 𝐻 ) ⊆ ℋ )
10 9 sselda ( ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝐵 ∈ ℋ )
11 orthcom ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih 𝐴 ) = 0 ) )
12 8 10 11 syl2an ( ( ( 𝐻 ⊆ ℋ ∧ 𝐴𝐻 ) ∧ ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ( 𝐴 ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih 𝐴 ) = 0 ) )
13 7 12 sylibrd ( ( ( 𝐻 ⊆ ℋ ∧ 𝐴𝐻 ) ∧ ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ∀ 𝑥𝐻 ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝐵 ) = 0 ) )
14 3 13 mpd ( ( ( 𝐻 ⊆ ℋ ∧ 𝐴𝐻 ) ∧ ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( 𝐴 ·ih 𝐵 ) = 0 )
15 14 anandis ( ( 𝐻 ⊆ ℋ ∧ ( 𝐴𝐻𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( 𝐴 ·ih 𝐵 ) = 0 )
16 15 ex ( 𝐻 ⊆ ℋ → ( ( 𝐴𝐻𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐴 ·ih 𝐵 ) = 0 ) )