| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ocval | ⊢ ( 𝐴  ⊆   ℋ  →  ( ⊥ ‘ 𝐴 )  =  { 𝑥  ∈   ℋ  ∣  ∀ 𝑦  ∈  𝐴 ( 𝑥  ·ih  𝑦 )  =  0 } ) | 
						
							| 2 |  | ssrab2 | ⊢ { 𝑥  ∈   ℋ  ∣  ∀ 𝑦  ∈  𝐴 ( 𝑥  ·ih  𝑦 )  =  0 }  ⊆   ℋ | 
						
							| 3 | 1 2 | eqsstrdi | ⊢ ( 𝐴  ⊆   ℋ  →  ( ⊥ ‘ 𝐴 )  ⊆   ℋ ) | 
						
							| 4 |  | ssel | ⊢ ( 𝐴  ⊆   ℋ  →  ( 𝑦  ∈  𝐴  →  𝑦  ∈   ℋ ) ) | 
						
							| 5 |  | hi01 | ⊢ ( 𝑦  ∈   ℋ  →  ( 0ℎ  ·ih  𝑦 )  =  0 ) | 
						
							| 6 | 4 5 | syl6 | ⊢ ( 𝐴  ⊆   ℋ  →  ( 𝑦  ∈  𝐴  →  ( 0ℎ  ·ih  𝑦 )  =  0 ) ) | 
						
							| 7 | 6 | ralrimiv | ⊢ ( 𝐴  ⊆   ℋ  →  ∀ 𝑦  ∈  𝐴 ( 0ℎ  ·ih  𝑦 )  =  0 ) | 
						
							| 8 |  | ax-hv0cl | ⊢ 0ℎ  ∈   ℋ | 
						
							| 9 | 7 8 | jctil | ⊢ ( 𝐴  ⊆   ℋ  →  ( 0ℎ  ∈   ℋ  ∧  ∀ 𝑦  ∈  𝐴 ( 0ℎ  ·ih  𝑦 )  =  0 ) ) | 
						
							| 10 |  | ocel | ⊢ ( 𝐴  ⊆   ℋ  →  ( 0ℎ  ∈  ( ⊥ ‘ 𝐴 )  ↔  ( 0ℎ  ∈   ℋ  ∧  ∀ 𝑦  ∈  𝐴 ( 0ℎ  ·ih  𝑦 )  =  0 ) ) ) | 
						
							| 11 | 9 10 | mpbird | ⊢ ( 𝐴  ⊆   ℋ  →  0ℎ  ∈  ( ⊥ ‘ 𝐴 ) ) | 
						
							| 12 | 3 11 | jca | ⊢ ( 𝐴  ⊆   ℋ  →  ( ( ⊥ ‘ 𝐴 )  ⊆   ℋ  ∧  0ℎ  ∈  ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 13 |  | ssel2 | ⊢ ( ( 𝐴  ⊆   ℋ  ∧  𝑧  ∈  𝐴 )  →  𝑧  ∈   ℋ ) | 
						
							| 14 |  | ax-his2 | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑥  +ℎ  𝑦 )  ·ih  𝑧 )  =  ( ( 𝑥  ·ih  𝑧 )  +  ( 𝑦  ·ih  𝑧 ) ) ) | 
						
							| 15 | 14 | 3expa | ⊢ ( ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑥  +ℎ  𝑦 )  ·ih  𝑧 )  =  ( ( 𝑥  ·ih  𝑧 )  +  ( 𝑦  ·ih  𝑧 ) ) ) | 
						
							| 16 |  | oveq12 | ⊢ ( ( ( 𝑥  ·ih  𝑧 )  =  0  ∧  ( 𝑦  ·ih  𝑧 )  =  0 )  →  ( ( 𝑥  ·ih  𝑧 )  +  ( 𝑦  ·ih  𝑧 ) )  =  ( 0  +  0 ) ) | 
						
							| 17 |  | 00id | ⊢ ( 0  +  0 )  =  0 | 
						
							| 18 | 16 17 | eqtrdi | ⊢ ( ( ( 𝑥  ·ih  𝑧 )  =  0  ∧  ( 𝑦  ·ih  𝑧 )  =  0 )  →  ( ( 𝑥  ·ih  𝑧 )  +  ( 𝑦  ·ih  𝑧 ) )  =  0 ) | 
						
							| 19 | 15 18 | sylan9eq | ⊢ ( ( ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  𝑧  ∈   ℋ )  ∧  ( ( 𝑥  ·ih  𝑧 )  =  0  ∧  ( 𝑦  ·ih  𝑧 )  =  0 ) )  →  ( ( 𝑥  +ℎ  𝑦 )  ·ih  𝑧 )  =  0 ) | 
						
							| 20 | 19 | ex | ⊢ ( ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  𝑧  ∈   ℋ )  →  ( ( ( 𝑥  ·ih  𝑧 )  =  0  ∧  ( 𝑦  ·ih  𝑧 )  =  0 )  →  ( ( 𝑥  +ℎ  𝑦 )  ·ih  𝑧 )  =  0 ) ) | 
						
							| 21 | 20 | ancoms | ⊢ ( ( 𝑧  ∈   ℋ  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( ( 𝑥  ·ih  𝑧 )  =  0  ∧  ( 𝑦  ·ih  𝑧 )  =  0 )  →  ( ( 𝑥  +ℎ  𝑦 )  ·ih  𝑧 )  =  0 ) ) | 
						
							| 22 | 13 21 | sylan | ⊢ ( ( ( 𝐴  ⊆   ℋ  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ( ( 𝑥  ·ih  𝑧 )  =  0  ∧  ( 𝑦  ·ih  𝑧 )  =  0 )  →  ( ( 𝑥  +ℎ  𝑦 )  ·ih  𝑧 )  =  0 ) ) | 
						
							| 23 | 22 | an32s | ⊢ ( ( ( 𝐴  ⊆   ℋ  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( ( 𝑥  ·ih  𝑧 )  =  0  ∧  ( 𝑦  ·ih  𝑧 )  =  0 )  →  ( ( 𝑥  +ℎ  𝑦 )  ·ih  𝑧 )  =  0 ) ) | 
						
							| 24 | 23 | ralimdva | ⊢ ( ( 𝐴  ⊆   ℋ  ∧  ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ ) )  →  ( ∀ 𝑧  ∈  𝐴 ( ( 𝑥  ·ih  𝑧 )  =  0  ∧  ( 𝑦  ·ih  𝑧 )  =  0 )  →  ∀ 𝑧  ∈  𝐴 ( ( 𝑥  +ℎ  𝑦 )  ·ih  𝑧 )  =  0 ) ) | 
						
							| 25 | 24 | imdistanda | ⊢ ( 𝐴  ⊆   ℋ  →  ( ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  ∀ 𝑧  ∈  𝐴 ( ( 𝑥  ·ih  𝑧 )  =  0  ∧  ( 𝑦  ·ih  𝑧 )  =  0 ) )  →  ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  ∀ 𝑧  ∈  𝐴 ( ( 𝑥  +ℎ  𝑦 )  ·ih  𝑧 )  =  0 ) ) ) | 
						
							| 26 |  | hvaddcl | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( 𝑥  +ℎ  𝑦 )  ∈   ℋ ) | 
						
							| 27 | 26 | anim1i | ⊢ ( ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  ∀ 𝑧  ∈  𝐴 ( ( 𝑥  +ℎ  𝑦 )  ·ih  𝑧 )  =  0 )  →  ( ( 𝑥  +ℎ  𝑦 )  ∈   ℋ  ∧  ∀ 𝑧  ∈  𝐴 ( ( 𝑥  +ℎ  𝑦 )  ·ih  𝑧 )  =  0 ) ) | 
						
							| 28 | 25 27 | syl6 | ⊢ ( 𝐴  ⊆   ℋ  →  ( ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  ∀ 𝑧  ∈  𝐴 ( ( 𝑥  ·ih  𝑧 )  =  0  ∧  ( 𝑦  ·ih  𝑧 )  =  0 ) )  →  ( ( 𝑥  +ℎ  𝑦 )  ∈   ℋ  ∧  ∀ 𝑧  ∈  𝐴 ( ( 𝑥  +ℎ  𝑦 )  ·ih  𝑧 )  =  0 ) ) ) | 
						
							| 29 |  | ocel | ⊢ ( 𝐴  ⊆   ℋ  →  ( 𝑥  ∈  ( ⊥ ‘ 𝐴 )  ↔  ( 𝑥  ∈   ℋ  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑥  ·ih  𝑧 )  =  0 ) ) ) | 
						
							| 30 |  | ocel | ⊢ ( 𝐴  ⊆   ℋ  →  ( 𝑦  ∈  ( ⊥ ‘ 𝐴 )  ↔  ( 𝑦  ∈   ℋ  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑦  ·ih  𝑧 )  =  0 ) ) ) | 
						
							| 31 | 29 30 | anbi12d | ⊢ ( 𝐴  ⊆   ℋ  →  ( ( 𝑥  ∈  ( ⊥ ‘ 𝐴 )  ∧  𝑦  ∈  ( ⊥ ‘ 𝐴 ) )  ↔  ( ( 𝑥  ∈   ℋ  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑥  ·ih  𝑧 )  =  0 )  ∧  ( 𝑦  ∈   ℋ  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑦  ·ih  𝑧 )  =  0 ) ) ) ) | 
						
							| 32 |  | an4 | ⊢ ( ( ( 𝑥  ∈   ℋ  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑥  ·ih  𝑧 )  =  0 )  ∧  ( 𝑦  ∈   ℋ  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑦  ·ih  𝑧 )  =  0 ) )  ↔  ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  ( ∀ 𝑧  ∈  𝐴 ( 𝑥  ·ih  𝑧 )  =  0  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑦  ·ih  𝑧 )  =  0 ) ) ) | 
						
							| 33 |  | r19.26 | ⊢ ( ∀ 𝑧  ∈  𝐴 ( ( 𝑥  ·ih  𝑧 )  =  0  ∧  ( 𝑦  ·ih  𝑧 )  =  0 )  ↔  ( ∀ 𝑧  ∈  𝐴 ( 𝑥  ·ih  𝑧 )  =  0  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑦  ·ih  𝑧 )  =  0 ) ) | 
						
							| 34 | 33 | anbi2i | ⊢ ( ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  ∀ 𝑧  ∈  𝐴 ( ( 𝑥  ·ih  𝑧 )  =  0  ∧  ( 𝑦  ·ih  𝑧 )  =  0 ) )  ↔  ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  ( ∀ 𝑧  ∈  𝐴 ( 𝑥  ·ih  𝑧 )  =  0  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑦  ·ih  𝑧 )  =  0 ) ) ) | 
						
							| 35 | 32 34 | bitr4i | ⊢ ( ( ( 𝑥  ∈   ℋ  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑥  ·ih  𝑧 )  =  0 )  ∧  ( 𝑦  ∈   ℋ  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑦  ·ih  𝑧 )  =  0 ) )  ↔  ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  ∀ 𝑧  ∈  𝐴 ( ( 𝑥  ·ih  𝑧 )  =  0  ∧  ( 𝑦  ·ih  𝑧 )  =  0 ) ) ) | 
						
							| 36 | 31 35 | bitrdi | ⊢ ( 𝐴  ⊆   ℋ  →  ( ( 𝑥  ∈  ( ⊥ ‘ 𝐴 )  ∧  𝑦  ∈  ( ⊥ ‘ 𝐴 ) )  ↔  ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  ∀ 𝑧  ∈  𝐴 ( ( 𝑥  ·ih  𝑧 )  =  0  ∧  ( 𝑦  ·ih  𝑧 )  =  0 ) ) ) ) | 
						
							| 37 |  | ocel | ⊢ ( 𝐴  ⊆   ℋ  →  ( ( 𝑥  +ℎ  𝑦 )  ∈  ( ⊥ ‘ 𝐴 )  ↔  ( ( 𝑥  +ℎ  𝑦 )  ∈   ℋ  ∧  ∀ 𝑧  ∈  𝐴 ( ( 𝑥  +ℎ  𝑦 )  ·ih  𝑧 )  =  0 ) ) ) | 
						
							| 38 | 28 36 37 | 3imtr4d | ⊢ ( 𝐴  ⊆   ℋ  →  ( ( 𝑥  ∈  ( ⊥ ‘ 𝐴 )  ∧  𝑦  ∈  ( ⊥ ‘ 𝐴 ) )  →  ( 𝑥  +ℎ  𝑦 )  ∈  ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 39 | 38 | ralrimivv | ⊢ ( 𝐴  ⊆   ℋ  →  ∀ 𝑥  ∈  ( ⊥ ‘ 𝐴 ) ∀ 𝑦  ∈  ( ⊥ ‘ 𝐴 ) ( 𝑥  +ℎ  𝑦 )  ∈  ( ⊥ ‘ 𝐴 ) ) | 
						
							| 40 |  | mul01 | ⊢ ( 𝑥  ∈  ℂ  →  ( 𝑥  ·  0 )  =  0 ) | 
						
							| 41 |  | oveq2 | ⊢ ( ( 𝑦  ·ih  𝑧 )  =  0  →  ( 𝑥  ·  ( 𝑦  ·ih  𝑧 ) )  =  ( 𝑥  ·  0 ) ) | 
						
							| 42 | 41 | eqeq1d | ⊢ ( ( 𝑦  ·ih  𝑧 )  =  0  →  ( ( 𝑥  ·  ( 𝑦  ·ih  𝑧 ) )  =  0  ↔  ( 𝑥  ·  0 )  =  0 ) ) | 
						
							| 43 | 40 42 | syl5ibrcom | ⊢ ( 𝑥  ∈  ℂ  →  ( ( 𝑦  ·ih  𝑧 )  =  0  →  ( 𝑥  ·  ( 𝑦  ·ih  𝑧 ) )  =  0 ) ) | 
						
							| 44 | 43 | ad2antrl | ⊢ ( ( 𝑧  ∈   ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  →  ( ( 𝑦  ·ih  𝑧 )  =  0  →  ( 𝑥  ·  ( 𝑦  ·ih  𝑧 ) )  =  0 ) ) | 
						
							| 45 |  | ax-his3 | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( ( 𝑥  ·ℎ  𝑦 )  ·ih  𝑧 )  =  ( 𝑥  ·  ( 𝑦  ·ih  𝑧 ) ) ) | 
						
							| 46 | 45 | eqeq1d | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( ( ( 𝑥  ·ℎ  𝑦 )  ·ih  𝑧 )  =  0  ↔  ( 𝑥  ·  ( 𝑦  ·ih  𝑧 ) )  =  0 ) ) | 
						
							| 47 | 46 | 3expa | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ )  ∧  𝑧  ∈   ℋ )  →  ( ( ( 𝑥  ·ℎ  𝑦 )  ·ih  𝑧 )  =  0  ↔  ( 𝑥  ·  ( 𝑦  ·ih  𝑧 ) )  =  0 ) ) | 
						
							| 48 | 47 | ancoms | ⊢ ( ( 𝑧  ∈   ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  →  ( ( ( 𝑥  ·ℎ  𝑦 )  ·ih  𝑧 )  =  0  ↔  ( 𝑥  ·  ( 𝑦  ·ih  𝑧 ) )  =  0 ) ) | 
						
							| 49 | 44 48 | sylibrd | ⊢ ( ( 𝑧  ∈   ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  →  ( ( 𝑦  ·ih  𝑧 )  =  0  →  ( ( 𝑥  ·ℎ  𝑦 )  ·ih  𝑧 )  =  0 ) ) | 
						
							| 50 | 13 49 | sylan | ⊢ ( ( ( 𝐴  ⊆   ℋ  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  →  ( ( 𝑦  ·ih  𝑧 )  =  0  →  ( ( 𝑥  ·ℎ  𝑦 )  ·ih  𝑧 )  =  0 ) ) | 
						
							| 51 | 50 | an32s | ⊢ ( ( ( 𝐴  ⊆   ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝑦  ·ih  𝑧 )  =  0  →  ( ( 𝑥  ·ℎ  𝑦 )  ·ih  𝑧 )  =  0 ) ) | 
						
							| 52 | 51 | ralimdva | ⊢ ( ( 𝐴  ⊆   ℋ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ ) )  →  ( ∀ 𝑧  ∈  𝐴 ( 𝑦  ·ih  𝑧 )  =  0  →  ∀ 𝑧  ∈  𝐴 ( ( 𝑥  ·ℎ  𝑦 )  ·ih  𝑧 )  =  0 ) ) | 
						
							| 53 | 52 | imdistanda | ⊢ ( 𝐴  ⊆   ℋ  →  ( ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ )  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑦  ·ih  𝑧 )  =  0 )  →  ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ )  ∧  ∀ 𝑧  ∈  𝐴 ( ( 𝑥  ·ℎ  𝑦 )  ·ih  𝑧 )  =  0 ) ) ) | 
						
							| 54 |  | hvmulcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ )  →  ( 𝑥  ·ℎ  𝑦 )  ∈   ℋ ) | 
						
							| 55 | 54 | anim1i | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ )  ∧  ∀ 𝑧  ∈  𝐴 ( ( 𝑥  ·ℎ  𝑦 )  ·ih  𝑧 )  =  0 )  →  ( ( 𝑥  ·ℎ  𝑦 )  ∈   ℋ  ∧  ∀ 𝑧  ∈  𝐴 ( ( 𝑥  ·ℎ  𝑦 )  ·ih  𝑧 )  =  0 ) ) | 
						
							| 56 | 53 55 | syl6 | ⊢ ( 𝐴  ⊆   ℋ  →  ( ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ )  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑦  ·ih  𝑧 )  =  0 )  →  ( ( 𝑥  ·ℎ  𝑦 )  ∈   ℋ  ∧  ∀ 𝑧  ∈  𝐴 ( ( 𝑥  ·ℎ  𝑦 )  ·ih  𝑧 )  =  0 ) ) ) | 
						
							| 57 | 30 | anbi2d | ⊢ ( 𝐴  ⊆   ℋ  →  ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ( ⊥ ‘ 𝐴 ) )  ↔  ( 𝑥  ∈  ℂ  ∧  ( 𝑦  ∈   ℋ  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑦  ·ih  𝑧 )  =  0 ) ) ) ) | 
						
							| 58 |  | anass | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ )  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑦  ·ih  𝑧 )  =  0 )  ↔  ( 𝑥  ∈  ℂ  ∧  ( 𝑦  ∈   ℋ  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑦  ·ih  𝑧 )  =  0 ) ) ) | 
						
							| 59 | 57 58 | bitr4di | ⊢ ( 𝐴  ⊆   ℋ  →  ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ( ⊥ ‘ 𝐴 ) )  ↔  ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈   ℋ )  ∧  ∀ 𝑧  ∈  𝐴 ( 𝑦  ·ih  𝑧 )  =  0 ) ) ) | 
						
							| 60 |  | ocel | ⊢ ( 𝐴  ⊆   ℋ  →  ( ( 𝑥  ·ℎ  𝑦 )  ∈  ( ⊥ ‘ 𝐴 )  ↔  ( ( 𝑥  ·ℎ  𝑦 )  ∈   ℋ  ∧  ∀ 𝑧  ∈  𝐴 ( ( 𝑥  ·ℎ  𝑦 )  ·ih  𝑧 )  =  0 ) ) ) | 
						
							| 61 | 56 59 60 | 3imtr4d | ⊢ ( 𝐴  ⊆   ℋ  →  ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ( ⊥ ‘ 𝐴 ) )  →  ( 𝑥  ·ℎ  𝑦 )  ∈  ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 62 | 61 | ralrimivv | ⊢ ( 𝐴  ⊆   ℋ  →  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  ( ⊥ ‘ 𝐴 ) ( 𝑥  ·ℎ  𝑦 )  ∈  ( ⊥ ‘ 𝐴 ) ) | 
						
							| 63 | 39 62 | jca | ⊢ ( 𝐴  ⊆   ℋ  →  ( ∀ 𝑥  ∈  ( ⊥ ‘ 𝐴 ) ∀ 𝑦  ∈  ( ⊥ ‘ 𝐴 ) ( 𝑥  +ℎ  𝑦 )  ∈  ( ⊥ ‘ 𝐴 )  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  ( ⊥ ‘ 𝐴 ) ( 𝑥  ·ℎ  𝑦 )  ∈  ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 64 |  | issh2 | ⊢ ( ( ⊥ ‘ 𝐴 )  ∈   Sℋ   ↔  ( ( ( ⊥ ‘ 𝐴 )  ⊆   ℋ  ∧  0ℎ  ∈  ( ⊥ ‘ 𝐴 ) )  ∧  ( ∀ 𝑥  ∈  ( ⊥ ‘ 𝐴 ) ∀ 𝑦  ∈  ( ⊥ ‘ 𝐴 ) ( 𝑥  +ℎ  𝑦 )  ∈  ( ⊥ ‘ 𝐴 )  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  ( ⊥ ‘ 𝐴 ) ( 𝑥  ·ℎ  𝑦 )  ∈  ( ⊥ ‘ 𝐴 ) ) ) ) | 
						
							| 65 | 12 63 64 | sylanbrc | ⊢ ( 𝐴  ⊆   ℋ  →  ( ⊥ ‘ 𝐴 )  ∈   Sℋ  ) |