| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ocval |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) = { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ·ih 𝑦 ) = 0 } ) |
| 2 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ·ih 𝑦 ) = 0 } ⊆ ℋ |
| 3 |
1 2
|
eqsstrdi |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) |
| 4 |
|
ssel |
⊢ ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ ) ) |
| 5 |
|
hi01 |
⊢ ( 𝑦 ∈ ℋ → ( 0ℎ ·ih 𝑦 ) = 0 ) |
| 6 |
4 5
|
syl6 |
⊢ ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ 𝐴 → ( 0ℎ ·ih 𝑦 ) = 0 ) ) |
| 7 |
6
|
ralrimiv |
⊢ ( 𝐴 ⊆ ℋ → ∀ 𝑦 ∈ 𝐴 ( 0ℎ ·ih 𝑦 ) = 0 ) |
| 8 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
| 9 |
7 8
|
jctil |
⊢ ( 𝐴 ⊆ ℋ → ( 0ℎ ∈ ℋ ∧ ∀ 𝑦 ∈ 𝐴 ( 0ℎ ·ih 𝑦 ) = 0 ) ) |
| 10 |
|
ocel |
⊢ ( 𝐴 ⊆ ℋ → ( 0ℎ ∈ ( ⊥ ‘ 𝐴 ) ↔ ( 0ℎ ∈ ℋ ∧ ∀ 𝑦 ∈ 𝐴 ( 0ℎ ·ih 𝑦 ) = 0 ) ) ) |
| 11 |
9 10
|
mpbird |
⊢ ( 𝐴 ⊆ ℋ → 0ℎ ∈ ( ⊥ ‘ 𝐴 ) ) |
| 12 |
3 11
|
jca |
⊢ ( 𝐴 ⊆ ℋ → ( ( ⊥ ‘ 𝐴 ) ⊆ ℋ ∧ 0ℎ ∈ ( ⊥ ‘ 𝐴 ) ) ) |
| 13 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℋ ) |
| 14 |
|
ax-his2 |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = ( ( 𝑥 ·ih 𝑧 ) + ( 𝑦 ·ih 𝑧 ) ) ) |
| 15 |
14
|
3expa |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = ( ( 𝑥 ·ih 𝑧 ) + ( 𝑦 ·ih 𝑧 ) ) ) |
| 16 |
|
oveq12 |
⊢ ( ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 ·ih 𝑧 ) + ( 𝑦 ·ih 𝑧 ) ) = ( 0 + 0 ) ) |
| 17 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 18 |
16 17
|
eqtrdi |
⊢ ( ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 ·ih 𝑧 ) + ( 𝑦 ·ih 𝑧 ) ) = 0 ) |
| 19 |
15 18
|
sylan9eq |
⊢ ( ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ) → ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) |
| 20 |
19
|
ex |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 21 |
20
|
ancoms |
⊢ ( ( 𝑧 ∈ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 22 |
13 21
|
sylan |
⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 23 |
22
|
an32s |
⊢ ( ( ( 𝐴 ⊆ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 24 |
23
|
ralimdva |
⊢ ( ( 𝐴 ⊆ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 25 |
24
|
imdistanda |
⊢ ( 𝐴 ⊆ ℋ → ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ) → ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) ) |
| 26 |
|
hvaddcl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ) |
| 27 |
26
|
anim1i |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) → ( ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 28 |
25 27
|
syl6 |
⊢ ( 𝐴 ⊆ ℋ → ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ) → ( ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) ) |
| 29 |
|
ocel |
⊢ ( 𝐴 ⊆ ℋ → ( 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ) ) ) |
| 30 |
|
ocel |
⊢ ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ↔ ( 𝑦 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) |
| 31 |
29 30
|
anbi12d |
⊢ ( 𝐴 ⊆ ℋ → ( ( 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( 𝑥 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ) ∧ ( 𝑦 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) ) |
| 32 |
|
an4 |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ) ∧ ( 𝑦 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ↔ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( ∀ 𝑧 ∈ 𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) |
| 33 |
|
r19.26 |
⊢ ( ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ↔ ( ∀ 𝑧 ∈ 𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) |
| 34 |
33
|
anbi2i |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ) ↔ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( ∀ 𝑧 ∈ 𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) |
| 35 |
32 34
|
bitr4i |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ) ∧ ( 𝑦 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ↔ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) |
| 36 |
31 35
|
bitrdi |
⊢ ( 𝐴 ⊆ ℋ → ( ( 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) ) |
| 37 |
|
ocel |
⊢ ( 𝐴 ⊆ ℋ → ( ( 𝑥 +ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ↔ ( ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 +ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) ) |
| 38 |
28 36 37
|
3imtr4d |
⊢ ( 𝐴 ⊆ ℋ → ( ( 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ) → ( 𝑥 +ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ) ) |
| 39 |
38
|
ralrimivv |
⊢ ( 𝐴 ⊆ ℋ → ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ∀ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ) |
| 40 |
|
mul01 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · 0 ) = 0 ) |
| 41 |
|
oveq2 |
⊢ ( ( 𝑦 ·ih 𝑧 ) = 0 → ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = ( 𝑥 · 0 ) ) |
| 42 |
41
|
eqeq1d |
⊢ ( ( 𝑦 ·ih 𝑧 ) = 0 → ( ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = 0 ↔ ( 𝑥 · 0 ) = 0 ) ) |
| 43 |
40 42
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑦 ·ih 𝑧 ) = 0 → ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = 0 ) ) |
| 44 |
43
|
ad2antrl |
⊢ ( ( 𝑧 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑦 ·ih 𝑧 ) = 0 → ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = 0 ) ) |
| 45 |
|
ax-his3 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) ) |
| 46 |
45
|
eqeq1d |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ↔ ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = 0 ) ) |
| 47 |
46
|
3expa |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ↔ ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = 0 ) ) |
| 48 |
47
|
ancoms |
⊢ ( ( 𝑧 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ↔ ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = 0 ) ) |
| 49 |
44 48
|
sylibrd |
⊢ ( ( 𝑧 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑦 ·ih 𝑧 ) = 0 → ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 50 |
13 49
|
sylan |
⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑦 ·ih 𝑧 ) = 0 → ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 51 |
50
|
an32s |
⊢ ( ( ( 𝐴 ⊆ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑦 ·ih 𝑧 ) = 0 → ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 52 |
51
|
ralimdva |
⊢ ( ( 𝐴 ⊆ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 → ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 53 |
52
|
imdistanda |
⊢ ( 𝐴 ⊆ ℋ → ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) ) |
| 54 |
|
hvmulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) |
| 55 |
54
|
anim1i |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) → ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) |
| 56 |
53 55
|
syl6 |
⊢ ( 𝐴 ⊆ ℋ → ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) ) |
| 57 |
30
|
anbi2d |
⊢ ( 𝐴 ⊆ ℋ → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) ) |
| 58 |
|
anass |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) |
| 59 |
57 58
|
bitr4di |
⊢ ( 𝐴 ⊆ ℋ → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) |
| 60 |
|
ocel |
⊢ ( 𝐴 ⊆ ℋ → ( ( 𝑥 ·ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ↔ ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ·ℎ 𝑦 ) ·ih 𝑧 ) = 0 ) ) ) |
| 61 |
56 59 60
|
3imtr4d |
⊢ ( 𝐴 ⊆ ℋ → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ) ) |
| 62 |
61
|
ralrimivv |
⊢ ( 𝐴 ⊆ ℋ → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ) |
| 63 |
39 62
|
jca |
⊢ ( 𝐴 ⊆ ℋ → ( ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ∀ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ) ) |
| 64 |
|
issh2 |
⊢ ( ( ⊥ ‘ 𝐴 ) ∈ Sℋ ↔ ( ( ( ⊥ ‘ 𝐴 ) ⊆ ℋ ∧ 0ℎ ∈ ( ⊥ ‘ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ∀ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 65 |
12 63 64
|
sylanbrc |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |