Description: An orthogonal complement is a subset of Hilbert space. (Contributed by NM, 9-Aug-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ocss | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ocsh | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) | |
| 2 | shss | ⊢ ( ( ⊥ ‘ 𝐴 ) ∈ Sℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) |