Metamath Proof Explorer


Theorem ocv0

Description: The orthocomplement of the empty set. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses ocvz.v 𝑉 = ( Base ‘ 𝑊 )
ocvz.o = ( ocv ‘ 𝑊 )
Assertion ocv0 ( ‘ ∅ ) = 𝑉

Proof

Step Hyp Ref Expression
1 ocvz.v 𝑉 = ( Base ‘ 𝑊 )
2 ocvz.o = ( ocv ‘ 𝑊 )
3 0ss ∅ ⊆ 𝑉
4 eqid ( ·𝑖𝑊 ) = ( ·𝑖𝑊 )
5 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
6 eqid ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) )
7 1 4 5 6 2 ocvval ( ∅ ⊆ 𝑉 → ( ‘ ∅ ) = { 𝑥𝑉 ∣ ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )
8 3 7 ax-mp ( ‘ ∅ ) = { 𝑥𝑉 ∣ ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }
9 ral0 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) )
10 9 rgenw 𝑥𝑉𝑦 ∈ ∅ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) )
11 rabid2 ( 𝑉 = { 𝑥𝑉 ∣ ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ↔ ∀ 𝑥𝑉𝑦 ∈ ∅ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
12 10 11 mpbir 𝑉 = { 𝑥𝑉 ∣ ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }
13 8 12 eqtr4i ( ‘ ∅ ) = 𝑉