| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ocvz.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
ocvz.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
| 3 |
|
0ss |
⊢ ∅ ⊆ 𝑉 |
| 4 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 7 |
1 4 5 6 2
|
ocvval |
⊢ ( ∅ ⊆ 𝑉 → ( ⊥ ‘ ∅ ) = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
| 8 |
3 7
|
ax-mp |
⊢ ( ⊥ ‘ ∅ ) = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } |
| 9 |
|
ral0 |
⊢ ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 10 |
9
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 11 |
|
rabid2 |
⊢ ( 𝑉 = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 12 |
10 11
|
mpbir |
⊢ 𝑉 = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } |
| 13 |
8 12
|
eqtr4i |
⊢ ( ⊥ ‘ ∅ ) = 𝑉 |