Step |
Hyp |
Ref |
Expression |
1 |
|
ocvz.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
ocvz.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
3 |
|
0ss |
⊢ ∅ ⊆ 𝑉 |
4 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
7 |
1 4 5 6 2
|
ocvval |
⊢ ( ∅ ⊆ 𝑉 → ( ⊥ ‘ ∅ ) = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
8 |
3 7
|
ax-mp |
⊢ ( ⊥ ‘ ∅ ) = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } |
9 |
|
ral0 |
⊢ ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
10 |
9
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
11 |
|
rabid2 |
⊢ ( 𝑉 = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
12 |
10 11
|
mpbir |
⊢ 𝑉 = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } |
13 |
8 12
|
eqtr4i |
⊢ ( ⊥ ‘ ∅ ) = 𝑉 |