| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ocvz.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
ocvz.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
| 3 |
|
ocvz.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 4 |
1 2
|
ocvss |
⊢ ( ⊥ ‘ 𝑉 ) ⊆ 𝑉 |
| 5 |
|
sseqin2 |
⊢ ( ( ⊥ ‘ 𝑉 ) ⊆ 𝑉 ↔ ( 𝑉 ∩ ( ⊥ ‘ 𝑉 ) ) = ( ⊥ ‘ 𝑉 ) ) |
| 6 |
4 5
|
mpbi |
⊢ ( 𝑉 ∩ ( ⊥ ‘ 𝑉 ) ) = ( ⊥ ‘ 𝑉 ) |
| 7 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
| 8 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 9 |
1 8
|
lss1 |
⊢ ( 𝑊 ∈ LMod → 𝑉 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 10 |
7 9
|
syl |
⊢ ( 𝑊 ∈ PreHil → 𝑉 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 11 |
2 8 3
|
ocvin |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑉 ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑉 ∩ ( ⊥ ‘ 𝑉 ) ) = { 0 } ) |
| 12 |
10 11
|
mpdan |
⊢ ( 𝑊 ∈ PreHil → ( 𝑉 ∩ ( ⊥ ‘ 𝑉 ) ) = { 0 } ) |
| 13 |
6 12
|
eqtr3id |
⊢ ( 𝑊 ∈ PreHil → ( ⊥ ‘ 𝑉 ) = { 0 } ) |