| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ocv2ss.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
| 2 |
|
sstr2 |
⊢ ( 𝑇 ⊆ 𝑆 → ( 𝑆 ⊆ ( Base ‘ 𝑊 ) → 𝑇 ⊆ ( Base ‘ 𝑊 ) ) ) |
| 3 |
|
idd |
⊢ ( 𝑇 ⊆ 𝑆 → ( 𝑥 ∈ ( Base ‘ 𝑊 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) ) |
| 4 |
|
ssralv |
⊢ ( 𝑇 ⊆ 𝑆 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 5 |
2 3 4
|
3anim123d |
⊢ ( 𝑇 ⊆ 𝑆 → ( ( 𝑆 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑇 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
| 8 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 9 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 10 |
6 7 8 9 1
|
elocv |
⊢ ( 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 11 |
6 7 8 9 1
|
elocv |
⊢ ( 𝑥 ∈ ( ⊥ ‘ 𝑇 ) ↔ ( 𝑇 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 12 |
5 10 11
|
3imtr4g |
⊢ ( 𝑇 ⊆ 𝑆 → ( 𝑥 ∈ ( ⊥ ‘ 𝑆 ) → 𝑥 ∈ ( ⊥ ‘ 𝑇 ) ) ) |
| 13 |
12
|
ssrdv |
⊢ ( 𝑇 ⊆ 𝑆 → ( ⊥ ‘ 𝑆 ) ⊆ ( ⊥ ‘ 𝑇 ) ) |