Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hilex |
⊢ ℋ ∈ V |
2 |
1
|
elpw2 |
⊢ ( 𝐻 ∈ 𝒫 ℋ ↔ 𝐻 ⊆ ℋ ) |
3 |
|
raleq |
⊢ ( 𝑧 = 𝐻 → ( ∀ 𝑦 ∈ 𝑧 ( 𝑥 ·ih 𝑦 ) = 0 ↔ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ih 𝑦 ) = 0 ) ) |
4 |
3
|
rabbidv |
⊢ ( 𝑧 = 𝐻 → { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝑧 ( 𝑥 ·ih 𝑦 ) = 0 } = { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ih 𝑦 ) = 0 } ) |
5 |
|
df-oc |
⊢ ⊥ = ( 𝑧 ∈ 𝒫 ℋ ↦ { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝑧 ( 𝑥 ·ih 𝑦 ) = 0 } ) |
6 |
1
|
rabex |
⊢ { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ih 𝑦 ) = 0 } ∈ V |
7 |
4 5 6
|
fvmpt |
⊢ ( 𝐻 ∈ 𝒫 ℋ → ( ⊥ ‘ 𝐻 ) = { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ih 𝑦 ) = 0 } ) |
8 |
2 7
|
sylbir |
⊢ ( 𝐻 ⊆ ℋ → ( ⊥ ‘ 𝐻 ) = { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ih 𝑦 ) = 0 } ) |