Step |
Hyp |
Ref |
Expression |
1 |
|
cssss.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
cssss.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) |
3 |
|
ocvcss.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
4 |
1 3
|
ocvocv |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
5 |
3
|
ocv2ss |
⊢ ( 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ⊆ ( ⊥ ‘ 𝑆 ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ⊆ ( ⊥ ‘ 𝑆 ) ) |
7 |
1 3
|
ocvss |
⊢ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 |
8 |
7
|
a1i |
⊢ ( 𝑆 ⊆ 𝑉 → ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) |
9 |
1 2 3
|
iscss2 |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) → ( ( ⊥ ‘ 𝑆 ) ∈ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ⊆ ( ⊥ ‘ 𝑆 ) ) ) |
10 |
8 9
|
sylan2 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ( ⊥ ‘ 𝑆 ) ∈ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ⊆ ( ⊥ ‘ 𝑆 ) ) ) |
11 |
6 10
|
mpbird |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑆 ) ∈ 𝐶 ) |