| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ocvfval.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | ocvfval.i | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | ocvfval.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 |  | ocvfval.z | ⊢  0   =  ( 0g ‘ 𝐹 ) | 
						
							| 5 |  | ocvfval.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 6 |  | elex | ⊢ ( 𝑊  ∈  𝑋  →  𝑊  ∈  V ) | 
						
							| 7 |  | fveq2 | ⊢ ( ℎ  =  𝑊  →  ( Base ‘ ℎ )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 8 | 7 1 | eqtr4di | ⊢ ( ℎ  =  𝑊  →  ( Base ‘ ℎ )  =  𝑉 ) | 
						
							| 9 | 8 | pweqd | ⊢ ( ℎ  =  𝑊  →  𝒫  ( Base ‘ ℎ )  =  𝒫  𝑉 ) | 
						
							| 10 |  | fveq2 | ⊢ ( ℎ  =  𝑊  →  ( ·𝑖 ‘ ℎ )  =  ( ·𝑖 ‘ 𝑊 ) ) | 
						
							| 11 | 10 2 | eqtr4di | ⊢ ( ℎ  =  𝑊  →  ( ·𝑖 ‘ ℎ )  =   ,  ) | 
						
							| 12 | 11 | oveqd | ⊢ ( ℎ  =  𝑊  →  ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 )  =  ( 𝑥  ,  𝑦 ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( ℎ  =  𝑊  →  ( Scalar ‘ ℎ )  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 14 | 13 3 | eqtr4di | ⊢ ( ℎ  =  𝑊  →  ( Scalar ‘ ℎ )  =  𝐹 ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( ℎ  =  𝑊  →  ( 0g ‘ ( Scalar ‘ ℎ ) )  =  ( 0g ‘ 𝐹 ) ) | 
						
							| 16 | 15 4 | eqtr4di | ⊢ ( ℎ  =  𝑊  →  ( 0g ‘ ( Scalar ‘ ℎ ) )  =   0  ) | 
						
							| 17 | 12 16 | eqeq12d | ⊢ ( ℎ  =  𝑊  →  ( ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ ℎ ) )  ↔  ( 𝑥  ,  𝑦 )  =   0  ) ) | 
						
							| 18 | 17 | ralbidv | ⊢ ( ℎ  =  𝑊  →  ( ∀ 𝑦  ∈  𝑠 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ ℎ ) )  ↔  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  ) ) | 
						
							| 19 | 8 18 | rabeqbidv | ⊢ ( ℎ  =  𝑊  →  { 𝑥  ∈  ( Base ‘ ℎ )  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ ℎ ) ) }  =  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  } ) | 
						
							| 20 | 9 19 | mpteq12dv | ⊢ ( ℎ  =  𝑊  →  ( 𝑠  ∈  𝒫  ( Base ‘ ℎ )  ↦  { 𝑥  ∈  ( Base ‘ ℎ )  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ ℎ ) ) } )  =  ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  } ) ) | 
						
							| 21 |  | df-ocv | ⊢ ocv  =  ( ℎ  ∈  V  ↦  ( 𝑠  ∈  𝒫  ( Base ‘ ℎ )  ↦  { 𝑥  ∈  ( Base ‘ ℎ )  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ ℎ ) ) } ) ) | 
						
							| 22 |  | eqid | ⊢ ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  } )  =  ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  } ) | 
						
							| 23 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 24 |  | ssrab2 | ⊢ { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  }  ⊆  𝑉 | 
						
							| 25 | 23 24 | elpwi2 | ⊢ { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  }  ∈  𝒫  𝑉 | 
						
							| 26 | 25 | a1i | ⊢ ( 𝑠  ∈  𝒫  𝑉  →  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  }  ∈  𝒫  𝑉 ) | 
						
							| 27 | 22 26 | fmpti | ⊢ ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  } ) : 𝒫  𝑉 ⟶ 𝒫  𝑉 | 
						
							| 28 | 23 | pwex | ⊢ 𝒫  𝑉  ∈  V | 
						
							| 29 |  | fex2 | ⊢ ( ( ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  } ) : 𝒫  𝑉 ⟶ 𝒫  𝑉  ∧  𝒫  𝑉  ∈  V  ∧  𝒫  𝑉  ∈  V )  →  ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  } )  ∈  V ) | 
						
							| 30 | 27 28 28 29 | mp3an | ⊢ ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  } )  ∈  V | 
						
							| 31 | 20 21 30 | fvmpt | ⊢ ( 𝑊  ∈  V  →  ( ocv ‘ 𝑊 )  =  ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  } ) ) | 
						
							| 32 | 6 31 | syl | ⊢ ( 𝑊  ∈  𝑋  →  ( ocv ‘ 𝑊 )  =  ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  } ) ) | 
						
							| 33 | 5 32 | eqtrid | ⊢ ( 𝑊  ∈  𝑋  →   ⊥   =  ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  } ) ) |