Step |
Hyp |
Ref |
Expression |
1 |
|
ocvfval.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
ocvfval.i |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
ocvfval.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
ocvfval.z |
⊢ 0 = ( 0g ‘ 𝐹 ) |
5 |
|
ocvfval.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
6 |
|
elex |
⊢ ( 𝑊 ∈ 𝑋 → 𝑊 ∈ V ) |
7 |
|
fveq2 |
⊢ ( ℎ = 𝑊 → ( Base ‘ ℎ ) = ( Base ‘ 𝑊 ) ) |
8 |
7 1
|
eqtr4di |
⊢ ( ℎ = 𝑊 → ( Base ‘ ℎ ) = 𝑉 ) |
9 |
8
|
pweqd |
⊢ ( ℎ = 𝑊 → 𝒫 ( Base ‘ ℎ ) = 𝒫 𝑉 ) |
10 |
|
fveq2 |
⊢ ( ℎ = 𝑊 → ( ·𝑖 ‘ ℎ ) = ( ·𝑖 ‘ 𝑊 ) ) |
11 |
10 2
|
eqtr4di |
⊢ ( ℎ = 𝑊 → ( ·𝑖 ‘ ℎ ) = , ) |
12 |
11
|
oveqd |
⊢ ( ℎ = 𝑊 → ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = ( 𝑥 , 𝑦 ) ) |
13 |
|
fveq2 |
⊢ ( ℎ = 𝑊 → ( Scalar ‘ ℎ ) = ( Scalar ‘ 𝑊 ) ) |
14 |
13 3
|
eqtr4di |
⊢ ( ℎ = 𝑊 → ( Scalar ‘ ℎ ) = 𝐹 ) |
15 |
14
|
fveq2d |
⊢ ( ℎ = 𝑊 → ( 0g ‘ ( Scalar ‘ ℎ ) ) = ( 0g ‘ 𝐹 ) ) |
16 |
15 4
|
eqtr4di |
⊢ ( ℎ = 𝑊 → ( 0g ‘ ( Scalar ‘ ℎ ) ) = 0 ) |
17 |
12 16
|
eqeq12d |
⊢ ( ℎ = 𝑊 → ( ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ ℎ ) ) ↔ ( 𝑥 , 𝑦 ) = 0 ) ) |
18 |
17
|
ralbidv |
⊢ ( ℎ = 𝑊 → ( ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ ℎ ) ) ↔ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 ) ) |
19 |
8 18
|
rabeqbidv |
⊢ ( ℎ = 𝑊 → { 𝑥 ∈ ( Base ‘ ℎ ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ ℎ ) ) } = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) |
20 |
9 19
|
mpteq12dv |
⊢ ( ℎ = 𝑊 → ( 𝑠 ∈ 𝒫 ( Base ‘ ℎ ) ↦ { 𝑥 ∈ ( Base ‘ ℎ ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ ℎ ) ) } ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ) |
21 |
|
df-ocv |
⊢ ocv = ( ℎ ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ ℎ ) ↦ { 𝑥 ∈ ( Base ‘ ℎ ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ ℎ ) ) } ) ) |
22 |
|
eqid |
⊢ ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) |
23 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
24 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ⊆ 𝑉 |
25 |
23 24
|
elpwi2 |
⊢ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ∈ 𝒫 𝑉 |
26 |
25
|
a1i |
⊢ ( 𝑠 ∈ 𝒫 𝑉 → { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ∈ 𝒫 𝑉 ) |
27 |
22 26
|
fmpti |
⊢ ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) : 𝒫 𝑉 ⟶ 𝒫 𝑉 |
28 |
23
|
pwex |
⊢ 𝒫 𝑉 ∈ V |
29 |
|
fex2 |
⊢ ( ( ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) : 𝒫 𝑉 ⟶ 𝒫 𝑉 ∧ 𝒫 𝑉 ∈ V ∧ 𝒫 𝑉 ∈ V ) → ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ∈ V ) |
30 |
27 28 28 29
|
mp3an |
⊢ ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ∈ V |
31 |
20 21 30
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( ocv ‘ 𝑊 ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ) |
32 |
6 31
|
syl |
⊢ ( 𝑊 ∈ 𝑋 → ( ocv ‘ 𝑊 ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ) |
33 |
5 32
|
eqtrid |
⊢ ( 𝑊 ∈ 𝑋 → ⊥ = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ) |