Metamath Proof Explorer


Theorem ocvfval

Description: The orthocomplement operation. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses ocvfval.v 𝑉 = ( Base ‘ 𝑊 )
ocvfval.i , = ( ·𝑖𝑊 )
ocvfval.f 𝐹 = ( Scalar ‘ 𝑊 )
ocvfval.z 0 = ( 0g𝐹 )
ocvfval.o = ( ocv ‘ 𝑊 )
Assertion ocvfval ( 𝑊𝑋 = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥𝑉 ∣ ∀ 𝑦𝑠 ( 𝑥 , 𝑦 ) = 0 } ) )

Proof

Step Hyp Ref Expression
1 ocvfval.v 𝑉 = ( Base ‘ 𝑊 )
2 ocvfval.i , = ( ·𝑖𝑊 )
3 ocvfval.f 𝐹 = ( Scalar ‘ 𝑊 )
4 ocvfval.z 0 = ( 0g𝐹 )
5 ocvfval.o = ( ocv ‘ 𝑊 )
6 elex ( 𝑊𝑋𝑊 ∈ V )
7 fveq2 ( = 𝑊 → ( Base ‘ ) = ( Base ‘ 𝑊 ) )
8 7 1 eqtr4di ( = 𝑊 → ( Base ‘ ) = 𝑉 )
9 8 pweqd ( = 𝑊 → 𝒫 ( Base ‘ ) = 𝒫 𝑉 )
10 fveq2 ( = 𝑊 → ( ·𝑖 ) = ( ·𝑖𝑊 ) )
11 10 2 eqtr4di ( = 𝑊 → ( ·𝑖 ) = , )
12 11 oveqd ( = 𝑊 → ( 𝑥 ( ·𝑖 ) 𝑦 ) = ( 𝑥 , 𝑦 ) )
13 fveq2 ( = 𝑊 → ( Scalar ‘ ) = ( Scalar ‘ 𝑊 ) )
14 13 3 eqtr4di ( = 𝑊 → ( Scalar ‘ ) = 𝐹 )
15 14 fveq2d ( = 𝑊 → ( 0g ‘ ( Scalar ‘ ) ) = ( 0g𝐹 ) )
16 15 4 eqtr4di ( = 𝑊 → ( 0g ‘ ( Scalar ‘ ) ) = 0 )
17 12 16 eqeq12d ( = 𝑊 → ( ( 𝑥 ( ·𝑖 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ ) ) ↔ ( 𝑥 , 𝑦 ) = 0 ) )
18 17 ralbidv ( = 𝑊 → ( ∀ 𝑦𝑠 ( 𝑥 ( ·𝑖 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ ) ) ↔ ∀ 𝑦𝑠 ( 𝑥 , 𝑦 ) = 0 ) )
19 8 18 rabeqbidv ( = 𝑊 → { 𝑥 ∈ ( Base ‘ ) ∣ ∀ 𝑦𝑠 ( 𝑥 ( ·𝑖 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ ) ) } = { 𝑥𝑉 ∣ ∀ 𝑦𝑠 ( 𝑥 , 𝑦 ) = 0 } )
20 9 19 mpteq12dv ( = 𝑊 → ( 𝑠 ∈ 𝒫 ( Base ‘ ) ↦ { 𝑥 ∈ ( Base ‘ ) ∣ ∀ 𝑦𝑠 ( 𝑥 ( ·𝑖 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ ) ) } ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥𝑉 ∣ ∀ 𝑦𝑠 ( 𝑥 , 𝑦 ) = 0 } ) )
21 df-ocv ocv = ( ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ ) ↦ { 𝑥 ∈ ( Base ‘ ) ∣ ∀ 𝑦𝑠 ( 𝑥 ( ·𝑖 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ ) ) } ) )
22 eqid ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥𝑉 ∣ ∀ 𝑦𝑠 ( 𝑥 , 𝑦 ) = 0 } ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥𝑉 ∣ ∀ 𝑦𝑠 ( 𝑥 , 𝑦 ) = 0 } )
23 1 fvexi 𝑉 ∈ V
24 ssrab2 { 𝑥𝑉 ∣ ∀ 𝑦𝑠 ( 𝑥 , 𝑦 ) = 0 } ⊆ 𝑉
25 23 24 elpwi2 { 𝑥𝑉 ∣ ∀ 𝑦𝑠 ( 𝑥 , 𝑦 ) = 0 } ∈ 𝒫 𝑉
26 25 a1i ( 𝑠 ∈ 𝒫 𝑉 → { 𝑥𝑉 ∣ ∀ 𝑦𝑠 ( 𝑥 , 𝑦 ) = 0 } ∈ 𝒫 𝑉 )
27 22 26 fmpti ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥𝑉 ∣ ∀ 𝑦𝑠 ( 𝑥 , 𝑦 ) = 0 } ) : 𝒫 𝑉 ⟶ 𝒫 𝑉
28 23 pwex 𝒫 𝑉 ∈ V
29 fex2 ( ( ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥𝑉 ∣ ∀ 𝑦𝑠 ( 𝑥 , 𝑦 ) = 0 } ) : 𝒫 𝑉 ⟶ 𝒫 𝑉 ∧ 𝒫 𝑉 ∈ V ∧ 𝒫 𝑉 ∈ V ) → ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥𝑉 ∣ ∀ 𝑦𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ∈ V )
30 27 28 28 29 mp3an ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥𝑉 ∣ ∀ 𝑦𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ∈ V
31 20 21 30 fvmpt ( 𝑊 ∈ V → ( ocv ‘ 𝑊 ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥𝑉 ∣ ∀ 𝑦𝑠 ( 𝑥 , 𝑦 ) = 0 } ) )
32 6 31 syl ( 𝑊𝑋 → ( ocv ‘ 𝑊 ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥𝑉 ∣ ∀ 𝑦𝑠 ( 𝑥 , 𝑦 ) = 0 } ) )
33 5 32 eqtrid ( 𝑊𝑋 = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥𝑉 ∣ ∀ 𝑦𝑠 ( 𝑥 , 𝑦 ) = 0 } ) )