| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ocvfval.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | ocvfval.i | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | ocvfval.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 |  | ocvfval.z | ⊢  0   =  ( 0g ‘ 𝐹 ) | 
						
							| 5 |  | ocvfval.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 6 | 1 2 3 4 5 | elocv | ⊢ ( 𝐴  ∈  (  ⊥  ‘ 𝑆 )  ↔  ( 𝑆  ⊆  𝑉  ∧  𝐴  ∈  𝑉  ∧  ∀ 𝑥  ∈  𝑆 ( 𝐴  ,  𝑥 )  =   0  ) ) | 
						
							| 7 | 6 | simp3bi | ⊢ ( 𝐴  ∈  (  ⊥  ‘ 𝑆 )  →  ∀ 𝑥  ∈  𝑆 ( 𝐴  ,  𝑥 )  =   0  ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴  ,  𝑥 )  =  ( 𝐴  ,  𝐵 ) ) | 
						
							| 9 | 8 | eqeq1d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝐴  ,  𝑥 )  =   0   ↔  ( 𝐴  ,  𝐵 )  =   0  ) ) | 
						
							| 10 | 9 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  𝑆 ( 𝐴  ,  𝑥 )  =   0   ∧  𝐵  ∈  𝑆 )  →  ( 𝐴  ,  𝐵 )  =   0  ) | 
						
							| 11 | 7 10 | sylan | ⊢ ( ( 𝐴  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝐵  ∈  𝑆 )  →  ( 𝐴  ,  𝐵 )  =   0  ) |