Step |
Hyp |
Ref |
Expression |
1 |
|
ocvfval.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
ocvfval.i |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
ocvfval.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
ocvfval.z |
⊢ 0 = ( 0g ‘ 𝐹 ) |
5 |
|
ocvfval.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
6 |
1 2 3 4 5
|
elocv |
⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) ↔ ( 𝑆 ⊆ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ) ) |
7 |
6
|
simp3bi |
⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) → ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ) |
8 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 , 𝑥 ) = ( 𝐴 , 𝐵 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 , 𝑥 ) = 0 ↔ ( 𝐴 , 𝐵 ) = 0 ) ) |
10 |
9
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 , 𝐵 ) = 0 ) |
11 |
7 10
|
sylan |
⊢ ( ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 , 𝐵 ) = 0 ) |