Metamath Proof Explorer


Theorem ocvin

Description: An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses ocv2ss.o = ( ocv ‘ 𝑊 )
ocvin.l 𝐿 = ( LSubSp ‘ 𝑊 )
ocvin.z 0 = ( 0g𝑊 )
Assertion ocvin ( ( 𝑊 ∈ PreHil ∧ 𝑆𝐿 ) → ( 𝑆 ∩ ( 𝑆 ) ) = { 0 } )

Proof

Step Hyp Ref Expression
1 ocv2ss.o = ( ocv ‘ 𝑊 )
2 ocvin.l 𝐿 = ( LSubSp ‘ 𝑊 )
3 ocvin.z 0 = ( 0g𝑊 )
4 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
5 eqid ( ·𝑖𝑊 ) = ( ·𝑖𝑊 )
6 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
7 eqid ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) )
8 4 5 6 7 1 ocvi ( ( 𝑥 ∈ ( 𝑆 ) ∧ 𝑥𝑆 ) → ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
9 8 ancoms ( ( 𝑥𝑆𝑥 ∈ ( 𝑆 ) ) → ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
10 9 adantl ( ( ( 𝑊 ∈ PreHil ∧ 𝑆𝐿 ) ∧ ( 𝑥𝑆𝑥 ∈ ( 𝑆 ) ) ) → ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
11 simpll ( ( ( 𝑊 ∈ PreHil ∧ 𝑆𝐿 ) ∧ ( 𝑥𝑆𝑥 ∈ ( 𝑆 ) ) ) → 𝑊 ∈ PreHil )
12 4 2 lssel ( ( 𝑆𝐿𝑥𝑆 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) )
13 12 ad2ant2lr ( ( ( 𝑊 ∈ PreHil ∧ 𝑆𝐿 ) ∧ ( 𝑥𝑆𝑥 ∈ ( 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) )
14 6 5 4 7 3 ipeq0 ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 = 0 ) )
15 11 13 14 syl2anc ( ( ( 𝑊 ∈ PreHil ∧ 𝑆𝐿 ) ∧ ( 𝑥𝑆𝑥 ∈ ( 𝑆 ) ) ) → ( ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 = 0 ) )
16 10 15 mpbid ( ( ( 𝑊 ∈ PreHil ∧ 𝑆𝐿 ) ∧ ( 𝑥𝑆𝑥 ∈ ( 𝑆 ) ) ) → 𝑥 = 0 )
17 16 ex ( ( 𝑊 ∈ PreHil ∧ 𝑆𝐿 ) → ( ( 𝑥𝑆𝑥 ∈ ( 𝑆 ) ) → 𝑥 = 0 ) )
18 elin ( 𝑥 ∈ ( 𝑆 ∩ ( 𝑆 ) ) ↔ ( 𝑥𝑆𝑥 ∈ ( 𝑆 ) ) )
19 velsn ( 𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
20 17 18 19 3imtr4g ( ( 𝑊 ∈ PreHil ∧ 𝑆𝐿 ) → ( 𝑥 ∈ ( 𝑆 ∩ ( 𝑆 ) ) → 𝑥 ∈ { 0 } ) )
21 20 ssrdv ( ( 𝑊 ∈ PreHil ∧ 𝑆𝐿 ) → ( 𝑆 ∩ ( 𝑆 ) ) ⊆ { 0 } )
22 phllmod ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod )
23 4 2 lssss ( 𝑆𝐿𝑆 ⊆ ( Base ‘ 𝑊 ) )
24 4 1 2 ocvlss ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑆 ) ∈ 𝐿 )
25 23 24 sylan2 ( ( 𝑊 ∈ PreHil ∧ 𝑆𝐿 ) → ( 𝑆 ) ∈ 𝐿 )
26 2 lssincl ( ( 𝑊 ∈ LMod ∧ 𝑆𝐿 ∧ ( 𝑆 ) ∈ 𝐿 ) → ( 𝑆 ∩ ( 𝑆 ) ) ∈ 𝐿 )
27 22 26 syl3an1 ( ( 𝑊 ∈ PreHil ∧ 𝑆𝐿 ∧ ( 𝑆 ) ∈ 𝐿 ) → ( 𝑆 ∩ ( 𝑆 ) ) ∈ 𝐿 )
28 25 27 mpd3an3 ( ( 𝑊 ∈ PreHil ∧ 𝑆𝐿 ) → ( 𝑆 ∩ ( 𝑆 ) ) ∈ 𝐿 )
29 3 2 lss0ss ( ( 𝑊 ∈ LMod ∧ ( 𝑆 ∩ ( 𝑆 ) ) ∈ 𝐿 ) → { 0 } ⊆ ( 𝑆 ∩ ( 𝑆 ) ) )
30 22 28 29 syl2an2r ( ( 𝑊 ∈ PreHil ∧ 𝑆𝐿 ) → { 0 } ⊆ ( 𝑆 ∩ ( 𝑆 ) ) )
31 21 30 eqssd ( ( 𝑊 ∈ PreHil ∧ 𝑆𝐿 ) → ( 𝑆 ∩ ( 𝑆 ) ) = { 0 } )