| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ocv2ss.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 2 |  | ocvin.l | ⊢ 𝐿  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | ocvin.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 5 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 6 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 7 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 8 | 4 5 6 7 1 | ocvi | ⊢ ( ( 𝑥  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 9 | 8 | ancoms | ⊢ ( ( 𝑥  ∈  𝑆  ∧  𝑥  ∈  (  ⊥  ‘ 𝑆 ) )  →  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑥  ∈  (  ⊥  ‘ 𝑆 ) ) )  →  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 11 |  | simpll | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑥  ∈  (  ⊥  ‘ 𝑆 ) ) )  →  𝑊  ∈  PreHil ) | 
						
							| 12 | 4 2 | lssel | ⊢ ( ( 𝑆  ∈  𝐿  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 13 | 12 | ad2ant2lr | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑥  ∈  (  ⊥  ‘ 𝑆 ) ) )  →  𝑥  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 14 | 6 5 4 7 3 | ipeq0 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  𝑥  =   0  ) ) | 
						
							| 15 | 11 13 14 | syl2anc | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑥  ∈  (  ⊥  ‘ 𝑆 ) ) )  →  ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  𝑥  =   0  ) ) | 
						
							| 16 | 10 15 | mpbid | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ∈  𝐿 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑥  ∈  (  ⊥  ‘ 𝑆 ) ) )  →  𝑥  =   0  ) | 
						
							| 17 | 16 | ex | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ∈  𝐿 )  →  ( ( 𝑥  ∈  𝑆  ∧  𝑥  ∈  (  ⊥  ‘ 𝑆 ) )  →  𝑥  =   0  ) ) | 
						
							| 18 |  | elin | ⊢ ( 𝑥  ∈  ( 𝑆  ∩  (  ⊥  ‘ 𝑆 ) )  ↔  ( 𝑥  ∈  𝑆  ∧  𝑥  ∈  (  ⊥  ‘ 𝑆 ) ) ) | 
						
							| 19 |  | velsn | ⊢ ( 𝑥  ∈  {  0  }  ↔  𝑥  =   0  ) | 
						
							| 20 | 17 18 19 | 3imtr4g | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ∈  𝐿 )  →  ( 𝑥  ∈  ( 𝑆  ∩  (  ⊥  ‘ 𝑆 ) )  →  𝑥  ∈  {  0  } ) ) | 
						
							| 21 | 20 | ssrdv | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ∈  𝐿 )  →  ( 𝑆  ∩  (  ⊥  ‘ 𝑆 ) )  ⊆  {  0  } ) | 
						
							| 22 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 23 | 4 2 | lssss | ⊢ ( 𝑆  ∈  𝐿  →  𝑆  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 24 | 4 1 2 | ocvlss | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  ( Base ‘ 𝑊 ) )  →  (  ⊥  ‘ 𝑆 )  ∈  𝐿 ) | 
						
							| 25 | 23 24 | sylan2 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ∈  𝐿 )  →  (  ⊥  ‘ 𝑆 )  ∈  𝐿 ) | 
						
							| 26 | 2 | lssincl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑆  ∈  𝐿  ∧  (  ⊥  ‘ 𝑆 )  ∈  𝐿 )  →  ( 𝑆  ∩  (  ⊥  ‘ 𝑆 ) )  ∈  𝐿 ) | 
						
							| 27 | 22 26 | syl3an1 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ∈  𝐿  ∧  (  ⊥  ‘ 𝑆 )  ∈  𝐿 )  →  ( 𝑆  ∩  (  ⊥  ‘ 𝑆 ) )  ∈  𝐿 ) | 
						
							| 28 | 25 27 | mpd3an3 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ∈  𝐿 )  →  ( 𝑆  ∩  (  ⊥  ‘ 𝑆 ) )  ∈  𝐿 ) | 
						
							| 29 | 3 2 | lss0ss | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑆  ∩  (  ⊥  ‘ 𝑆 ) )  ∈  𝐿 )  →  {  0  }  ⊆  ( 𝑆  ∩  (  ⊥  ‘ 𝑆 ) ) ) | 
						
							| 30 | 22 28 29 | syl2an2r | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ∈  𝐿 )  →  {  0  }  ⊆  ( 𝑆  ∩  (  ⊥  ‘ 𝑆 ) ) ) | 
						
							| 31 | 21 30 | eqssd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ∈  𝐿 )  →  ( 𝑆  ∩  (  ⊥  ‘ 𝑆 ) )  =  {  0  } ) |