Step |
Hyp |
Ref |
Expression |
1 |
|
ocvlsp.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
ocvlsp.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
3 |
|
ocvlsp.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
5 |
1 3
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( 𝑁 ‘ 𝑆 ) ) |
6 |
4 5
|
sylan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( 𝑁 ‘ 𝑆 ) ) |
7 |
2
|
ocv2ss |
⊢ ( 𝑆 ⊆ ( 𝑁 ‘ 𝑆 ) → ( ⊥ ‘ ( 𝑁 ‘ 𝑆 ) ) ⊆ ( ⊥ ‘ 𝑆 ) ) |
8 |
6 7
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝑁 ‘ 𝑆 ) ) ⊆ ( ⊥ ‘ 𝑆 ) ) |
9 |
1 2
|
ocvss |
⊢ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 |
10 |
9
|
a1i |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) |
11 |
1 2
|
ocvocv |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) → ( ⊥ ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |
12 |
10 11
|
syldan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |
13 |
4
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑊 ∈ LMod ) |
14 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
15 |
1 2 14
|
ocvlss |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
16 |
10 15
|
syldan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
17 |
1 2
|
ocvocv |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
18 |
14 3
|
lspssp |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( 𝑁 ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
19 |
13 16 17 18
|
syl3anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
20 |
2
|
ocv2ss |
⊢ ( ( 𝑁 ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ⊆ ( ⊥ ‘ ( 𝑁 ‘ 𝑆 ) ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ⊆ ( ⊥ ‘ ( 𝑁 ‘ 𝑆 ) ) ) |
22 |
12 21
|
sstrd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( 𝑁 ‘ 𝑆 ) ) ) |
23 |
8 22
|
eqssd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝑁 ‘ 𝑆 ) ) = ( ⊥ ‘ 𝑆 ) ) |