| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ocvlsp.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
ocvlsp.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
| 3 |
|
ocvlsp.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
| 5 |
1 3
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( 𝑁 ‘ 𝑆 ) ) |
| 6 |
4 5
|
sylan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( 𝑁 ‘ 𝑆 ) ) |
| 7 |
2
|
ocv2ss |
⊢ ( 𝑆 ⊆ ( 𝑁 ‘ 𝑆 ) → ( ⊥ ‘ ( 𝑁 ‘ 𝑆 ) ) ⊆ ( ⊥ ‘ 𝑆 ) ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝑁 ‘ 𝑆 ) ) ⊆ ( ⊥ ‘ 𝑆 ) ) |
| 9 |
1 2
|
ocvss |
⊢ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 |
| 10 |
9
|
a1i |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) |
| 11 |
1 2
|
ocvocv |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) → ( ⊥ ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |
| 12 |
10 11
|
syldan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |
| 13 |
4
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑊 ∈ LMod ) |
| 14 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 15 |
1 2 14
|
ocvlss |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 16 |
10 15
|
syldan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 17 |
1 2
|
ocvocv |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 18 |
14 3
|
lspssp |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( 𝑁 ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 19 |
13 16 17 18
|
syl3anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 20 |
2
|
ocv2ss |
⊢ ( ( 𝑁 ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ⊆ ( ⊥ ‘ ( 𝑁 ‘ 𝑆 ) ) ) |
| 21 |
19 20
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ⊆ ( ⊥ ‘ ( 𝑁 ‘ 𝑆 ) ) ) |
| 22 |
12 21
|
sstrd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( 𝑁 ‘ 𝑆 ) ) ) |
| 23 |
8 22
|
eqssd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝑁 ‘ 𝑆 ) ) = ( ⊥ ‘ 𝑆 ) ) |