Metamath Proof Explorer


Theorem ocvlsp

Description: The orthocomplement of a linear span. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses ocvlsp.v 𝑉 = ( Base ‘ 𝑊 )
ocvlsp.o = ( ocv ‘ 𝑊 )
ocvlsp.n 𝑁 = ( LSpan ‘ 𝑊 )
Assertion ocvlsp ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉 ) → ( ‘ ( 𝑁𝑆 ) ) = ( 𝑆 ) )

Proof

Step Hyp Ref Expression
1 ocvlsp.v 𝑉 = ( Base ‘ 𝑊 )
2 ocvlsp.o = ( ocv ‘ 𝑊 )
3 ocvlsp.n 𝑁 = ( LSpan ‘ 𝑊 )
4 phllmod ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod )
5 1 3 lspssid ( ( 𝑊 ∈ LMod ∧ 𝑆𝑉 ) → 𝑆 ⊆ ( 𝑁𝑆 ) )
6 4 5 sylan ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉 ) → 𝑆 ⊆ ( 𝑁𝑆 ) )
7 2 ocv2ss ( 𝑆 ⊆ ( 𝑁𝑆 ) → ( ‘ ( 𝑁𝑆 ) ) ⊆ ( 𝑆 ) )
8 6 7 syl ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉 ) → ( ‘ ( 𝑁𝑆 ) ) ⊆ ( 𝑆 ) )
9 1 2 ocvss ( 𝑆 ) ⊆ 𝑉
10 9 a1i ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉 ) → ( 𝑆 ) ⊆ 𝑉 )
11 1 2 ocvocv ( ( 𝑊 ∈ PreHil ∧ ( 𝑆 ) ⊆ 𝑉 ) → ( 𝑆 ) ⊆ ( ‘ ( ‘ ( 𝑆 ) ) ) )
12 10 11 syldan ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉 ) → ( 𝑆 ) ⊆ ( ‘ ( ‘ ( 𝑆 ) ) ) )
13 4 adantr ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉 ) → 𝑊 ∈ LMod )
14 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
15 1 2 14 ocvlss ( ( 𝑊 ∈ PreHil ∧ ( 𝑆 ) ⊆ 𝑉 ) → ( ‘ ( 𝑆 ) ) ∈ ( LSubSp ‘ 𝑊 ) )
16 10 15 syldan ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉 ) → ( ‘ ( 𝑆 ) ) ∈ ( LSubSp ‘ 𝑊 ) )
17 1 2 ocvocv ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉 ) → 𝑆 ⊆ ( ‘ ( 𝑆 ) ) )
18 14 3 lspssp ( ( 𝑊 ∈ LMod ∧ ( ‘ ( 𝑆 ) ) ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆 ⊆ ( ‘ ( 𝑆 ) ) ) → ( 𝑁𝑆 ) ⊆ ( ‘ ( 𝑆 ) ) )
19 13 16 17 18 syl3anc ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉 ) → ( 𝑁𝑆 ) ⊆ ( ‘ ( 𝑆 ) ) )
20 2 ocv2ss ( ( 𝑁𝑆 ) ⊆ ( ‘ ( 𝑆 ) ) → ( ‘ ( ‘ ( 𝑆 ) ) ) ⊆ ( ‘ ( 𝑁𝑆 ) ) )
21 19 20 syl ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉 ) → ( ‘ ( ‘ ( 𝑆 ) ) ) ⊆ ( ‘ ( 𝑁𝑆 ) ) )
22 12 21 sstrd ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉 ) → ( 𝑆 ) ⊆ ( ‘ ( 𝑁𝑆 ) ) )
23 8 22 eqssd ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉 ) → ( ‘ ( 𝑁𝑆 ) ) = ( 𝑆 ) )