Metamath Proof Explorer


Theorem ocvsscon

Description: Two ways to say that S and T are orthogonal subspaces. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses ocvlsp.v 𝑉 = ( Base ‘ 𝑊 )
ocvlsp.o = ( ocv ‘ 𝑊 )
Assertion ocvsscon ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉𝑇𝑉 ) → ( 𝑆 ⊆ ( 𝑇 ) ↔ 𝑇 ⊆ ( 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 ocvlsp.v 𝑉 = ( Base ‘ 𝑊 )
2 ocvlsp.o = ( ocv ‘ 𝑊 )
3 1 2 ocvocv ( ( 𝑊 ∈ PreHil ∧ 𝑇𝑉 ) → 𝑇 ⊆ ( ‘ ( 𝑇 ) ) )
4 3 3adant2 ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉𝑇𝑉 ) → 𝑇 ⊆ ( ‘ ( 𝑇 ) ) )
5 2 ocv2ss ( 𝑆 ⊆ ( 𝑇 ) → ( ‘ ( 𝑇 ) ) ⊆ ( 𝑆 ) )
6 sstr2 ( 𝑇 ⊆ ( ‘ ( 𝑇 ) ) → ( ( ‘ ( 𝑇 ) ) ⊆ ( 𝑆 ) → 𝑇 ⊆ ( 𝑆 ) ) )
7 4 5 6 syl2im ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉𝑇𝑉 ) → ( 𝑆 ⊆ ( 𝑇 ) → 𝑇 ⊆ ( 𝑆 ) ) )
8 1 2 ocvocv ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉 ) → 𝑆 ⊆ ( ‘ ( 𝑆 ) ) )
9 8 3adant3 ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉𝑇𝑉 ) → 𝑆 ⊆ ( ‘ ( 𝑆 ) ) )
10 2 ocv2ss ( 𝑇 ⊆ ( 𝑆 ) → ( ‘ ( 𝑆 ) ) ⊆ ( 𝑇 ) )
11 sstr2 ( 𝑆 ⊆ ( ‘ ( 𝑆 ) ) → ( ( ‘ ( 𝑆 ) ) ⊆ ( 𝑇 ) → 𝑆 ⊆ ( 𝑇 ) ) )
12 9 10 11 syl2im ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉𝑇𝑉 ) → ( 𝑇 ⊆ ( 𝑆 ) → 𝑆 ⊆ ( 𝑇 ) ) )
13 7 12 impbid ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉𝑇𝑉 ) → ( 𝑆 ⊆ ( 𝑇 ) ↔ 𝑇 ⊆ ( 𝑆 ) ) )