| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ocvfval.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | ocvfval.i | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | ocvfval.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 |  | ocvfval.z | ⊢  0   =  ( 0g ‘ 𝐹 ) | 
						
							| 5 |  | ocvfval.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 6 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 7 | 6 | elpw2 | ⊢ ( 𝑆  ∈  𝒫  𝑉  ↔  𝑆  ⊆  𝑉 ) | 
						
							| 8 | 1 2 3 4 5 | ocvfval | ⊢ ( 𝑊  ∈  V  →   ⊥   =  ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  } ) ) | 
						
							| 9 | 8 | fveq1d | ⊢ ( 𝑊  ∈  V  →  (  ⊥  ‘ 𝑆 )  =  ( ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  } ) ‘ 𝑆 ) ) | 
						
							| 10 |  | raleq | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0   ↔  ∀ 𝑦  ∈  𝑆 ( 𝑥  ,  𝑦 )  =   0  ) ) | 
						
							| 11 | 10 | rabbidv | ⊢ ( 𝑠  =  𝑆  →  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  }  =  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑆 ( 𝑥  ,  𝑦 )  =   0  } ) | 
						
							| 12 |  | eqid | ⊢ ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  } )  =  ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  } ) | 
						
							| 13 | 6 | rabex | ⊢ { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑆 ( 𝑥  ,  𝑦 )  =   0  }  ∈  V | 
						
							| 14 | 11 12 13 | fvmpt | ⊢ ( 𝑆  ∈  𝒫  𝑉  →  ( ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥  ,  𝑦 )  =   0  } ) ‘ 𝑆 )  =  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑆 ( 𝑥  ,  𝑦 )  =   0  } ) | 
						
							| 15 | 9 14 | sylan9eq | ⊢ ( ( 𝑊  ∈  V  ∧  𝑆  ∈  𝒫  𝑉 )  →  (  ⊥  ‘ 𝑆 )  =  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑆 ( 𝑥  ,  𝑦 )  =   0  } ) | 
						
							| 16 |  | 0fv | ⊢ ( ∅ ‘ 𝑆 )  =  ∅ | 
						
							| 17 |  | fvprc | ⊢ ( ¬  𝑊  ∈  V  →  ( ocv ‘ 𝑊 )  =  ∅ ) | 
						
							| 18 | 5 17 | eqtrid | ⊢ ( ¬  𝑊  ∈  V  →   ⊥   =  ∅ ) | 
						
							| 19 | 18 | fveq1d | ⊢ ( ¬  𝑊  ∈  V  →  (  ⊥  ‘ 𝑆 )  =  ( ∅ ‘ 𝑆 ) ) | 
						
							| 20 |  | ssrab2 | ⊢ { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑆 ( 𝑥  ,  𝑦 )  =   0  }  ⊆  𝑉 | 
						
							| 21 |  | fvprc | ⊢ ( ¬  𝑊  ∈  V  →  ( Base ‘ 𝑊 )  =  ∅ ) | 
						
							| 22 | 1 21 | eqtrid | ⊢ ( ¬  𝑊  ∈  V  →  𝑉  =  ∅ ) | 
						
							| 23 |  | sseq0 | ⊢ ( ( { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑆 ( 𝑥  ,  𝑦 )  =   0  }  ⊆  𝑉  ∧  𝑉  =  ∅ )  →  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑆 ( 𝑥  ,  𝑦 )  =   0  }  =  ∅ ) | 
						
							| 24 | 20 22 23 | sylancr | ⊢ ( ¬  𝑊  ∈  V  →  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑆 ( 𝑥  ,  𝑦 )  =   0  }  =  ∅ ) | 
						
							| 25 | 16 19 24 | 3eqtr4a | ⊢ ( ¬  𝑊  ∈  V  →  (  ⊥  ‘ 𝑆 )  =  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑆 ( 𝑥  ,  𝑦 )  =   0  } ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( ¬  𝑊  ∈  V  ∧  𝑆  ∈  𝒫  𝑉 )  →  (  ⊥  ‘ 𝑆 )  =  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑆 ( 𝑥  ,  𝑦 )  =   0  } ) | 
						
							| 27 | 15 26 | pm2.61ian | ⊢ ( 𝑆  ∈  𝒫  𝑉  →  (  ⊥  ‘ 𝑆 )  =  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑆 ( 𝑥  ,  𝑦 )  =   0  } ) | 
						
							| 28 | 7 27 | sylbir | ⊢ ( 𝑆  ⊆  𝑉  →  (  ⊥  ‘ 𝑆 )  =  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  𝑆 ( 𝑥  ,  𝑦 )  =   0  } ) |