Step |
Hyp |
Ref |
Expression |
1 |
|
ocvfval.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
ocvfval.i |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
ocvfval.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
ocvfval.z |
⊢ 0 = ( 0g ‘ 𝐹 ) |
5 |
|
ocvfval.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
6 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
7 |
6
|
elpw2 |
⊢ ( 𝑆 ∈ 𝒫 𝑉 ↔ 𝑆 ⊆ 𝑉 ) |
8 |
1 2 3 4 5
|
ocvfval |
⊢ ( 𝑊 ∈ V → ⊥ = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ) |
9 |
8
|
fveq1d |
⊢ ( 𝑊 ∈ V → ( ⊥ ‘ 𝑆 ) = ( ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ‘ 𝑆 ) ) |
10 |
|
raleq |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 ) ) |
11 |
10
|
rabbidv |
⊢ ( 𝑠 = 𝑆 → { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ) |
12 |
|
eqid |
⊢ ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) |
13 |
6
|
rabex |
⊢ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ∈ V |
14 |
11 12 13
|
fvmpt |
⊢ ( 𝑆 ∈ 𝒫 𝑉 → ( ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ‘ 𝑆 ) = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ) |
15 |
9 14
|
sylan9eq |
⊢ ( ( 𝑊 ∈ V ∧ 𝑆 ∈ 𝒫 𝑉 ) → ( ⊥ ‘ 𝑆 ) = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ) |
16 |
|
0fv |
⊢ ( ∅ ‘ 𝑆 ) = ∅ |
17 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( ocv ‘ 𝑊 ) = ∅ ) |
18 |
5 17
|
eqtrid |
⊢ ( ¬ 𝑊 ∈ V → ⊥ = ∅ ) |
19 |
18
|
fveq1d |
⊢ ( ¬ 𝑊 ∈ V → ( ⊥ ‘ 𝑆 ) = ( ∅ ‘ 𝑆 ) ) |
20 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ⊆ 𝑉 |
21 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( Base ‘ 𝑊 ) = ∅ ) |
22 |
1 21
|
eqtrid |
⊢ ( ¬ 𝑊 ∈ V → 𝑉 = ∅ ) |
23 |
|
sseq0 |
⊢ ( ( { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ⊆ 𝑉 ∧ 𝑉 = ∅ ) → { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } = ∅ ) |
24 |
20 22 23
|
sylancr |
⊢ ( ¬ 𝑊 ∈ V → { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } = ∅ ) |
25 |
16 19 24
|
3eqtr4a |
⊢ ( ¬ 𝑊 ∈ V → ( ⊥ ‘ 𝑆 ) = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ) |
26 |
25
|
adantr |
⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝑆 ∈ 𝒫 𝑉 ) → ( ⊥ ‘ 𝑆 ) = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ) |
27 |
15 26
|
pm2.61ian |
⊢ ( 𝑆 ∈ 𝒫 𝑉 → ( ⊥ ‘ 𝑆 ) = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ) |
28 |
7 27
|
sylbir |
⊢ ( 𝑆 ⊆ 𝑉 → ( ⊥ ‘ 𝑆 ) = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ) |