| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ocvz.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
ocvz.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
| 3 |
|
ocvz.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 4 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
| 5 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
| 6 |
3 5
|
lsp0 |
⊢ ( 𝑊 ∈ LMod → ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) = { 0 } ) |
| 7 |
4 6
|
syl |
⊢ ( 𝑊 ∈ PreHil → ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) = { 0 } ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝑊 ∈ PreHil → ( ⊥ ‘ ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) = ( ⊥ ‘ { 0 } ) ) |
| 9 |
|
0ss |
⊢ ∅ ⊆ 𝑉 |
| 10 |
1 2 5
|
ocvlsp |
⊢ ( ( 𝑊 ∈ PreHil ∧ ∅ ⊆ 𝑉 ) → ( ⊥ ‘ ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) = ( ⊥ ‘ ∅ ) ) |
| 11 |
9 10
|
mpan2 |
⊢ ( 𝑊 ∈ PreHil → ( ⊥ ‘ ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) = ( ⊥ ‘ ∅ ) ) |
| 12 |
1 2
|
ocv0 |
⊢ ( ⊥ ‘ ∅ ) = 𝑉 |
| 13 |
11 12
|
eqtrdi |
⊢ ( 𝑊 ∈ PreHil → ( ⊥ ‘ ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) = 𝑉 ) |
| 14 |
8 13
|
eqtr3d |
⊢ ( 𝑊 ∈ PreHil → ( ⊥ ‘ { 0 } ) = 𝑉 ) |