Step |
Hyp |
Ref |
Expression |
1 |
|
ocvz.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
ocvz.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
3 |
|
ocvz.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
4 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
5 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
6 |
3 5
|
lsp0 |
⊢ ( 𝑊 ∈ LMod → ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) = { 0 } ) |
7 |
4 6
|
syl |
⊢ ( 𝑊 ∈ PreHil → ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) = { 0 } ) |
8 |
7
|
fveq2d |
⊢ ( 𝑊 ∈ PreHil → ( ⊥ ‘ ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) = ( ⊥ ‘ { 0 } ) ) |
9 |
|
0ss |
⊢ ∅ ⊆ 𝑉 |
10 |
1 2 5
|
ocvlsp |
⊢ ( ( 𝑊 ∈ PreHil ∧ ∅ ⊆ 𝑉 ) → ( ⊥ ‘ ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) = ( ⊥ ‘ ∅ ) ) |
11 |
9 10
|
mpan2 |
⊢ ( 𝑊 ∈ PreHil → ( ⊥ ‘ ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) = ( ⊥ ‘ ∅ ) ) |
12 |
1 2
|
ocv0 |
⊢ ( ⊥ ‘ ∅ ) = 𝑉 |
13 |
11 12
|
eqtrdi |
⊢ ( 𝑊 ∈ PreHil → ( ⊥ ‘ ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) = 𝑉 ) |
14 |
8 13
|
eqtr3d |
⊢ ( 𝑊 ∈ PreHil → ( ⊥ ‘ { 0 } ) = 𝑉 ) |