| Step | Hyp | Ref | Expression | 
						
							| 1 |  | od1.1 | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 2 |  | od1.2 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 4 | 3 2 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →   0   ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 5 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 6 | 5 | a1i | ⊢ ( 𝐺  ∈  Grp  →  1  ∈  ℕ ) | 
						
							| 7 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 8 | 3 7 | mulg1 | ⊢ (  0   ∈  ( Base ‘ 𝐺 )  →  ( 1 ( .g ‘ 𝐺 )  0  )  =   0  ) | 
						
							| 9 | 4 8 | syl | ⊢ ( 𝐺  ∈  Grp  →  ( 1 ( .g ‘ 𝐺 )  0  )  =   0  ) | 
						
							| 10 | 3 1 7 2 | odlem2 | ⊢ ( (  0   ∈  ( Base ‘ 𝐺 )  ∧  1  ∈  ℕ  ∧  ( 1 ( .g ‘ 𝐺 )  0  )  =   0  )  →  ( 𝑂 ‘  0  )  ∈  ( 1 ... 1 ) ) | 
						
							| 11 | 4 6 9 10 | syl3anc | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑂 ‘  0  )  ∈  ( 1 ... 1 ) ) | 
						
							| 12 |  | elfz1eq | ⊢ ( ( 𝑂 ‘  0  )  ∈  ( 1 ... 1 )  →  ( 𝑂 ‘  0  )  =  1 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑂 ‘  0  )  =  1 ) |