Metamath Proof Explorer


Theorem od1

Description: The order of the group identity is one. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypotheses od1.1 𝑂 = ( od ‘ 𝐺 )
od1.2 0 = ( 0g𝐺 )
Assertion od1 ( 𝐺 ∈ Grp → ( 𝑂0 ) = 1 )

Proof

Step Hyp Ref Expression
1 od1.1 𝑂 = ( od ‘ 𝐺 )
2 od1.2 0 = ( 0g𝐺 )
3 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
4 3 2 grpidcl ( 𝐺 ∈ Grp → 0 ∈ ( Base ‘ 𝐺 ) )
5 1nn 1 ∈ ℕ
6 5 a1i ( 𝐺 ∈ Grp → 1 ∈ ℕ )
7 eqid ( .g𝐺 ) = ( .g𝐺 )
8 3 7 mulg1 ( 0 ∈ ( Base ‘ 𝐺 ) → ( 1 ( .g𝐺 ) 0 ) = 0 )
9 4 8 syl ( 𝐺 ∈ Grp → ( 1 ( .g𝐺 ) 0 ) = 0 )
10 3 1 7 2 odlem2 ( ( 0 ∈ ( Base ‘ 𝐺 ) ∧ 1 ∈ ℕ ∧ ( 1 ( .g𝐺 ) 0 ) = 0 ) → ( 𝑂0 ) ∈ ( 1 ... 1 ) )
11 4 6 9 10 syl3anc ( 𝐺 ∈ Grp → ( 𝑂0 ) ∈ ( 1 ... 1 ) )
12 elfz1eq ( ( 𝑂0 ) ∈ ( 1 ... 1 ) → ( 𝑂0 ) = 1 )
13 11 12 syl ( 𝐺 ∈ Grp → ( 𝑂0 ) = 1 )