| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odadd1.1 | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 2 |  | odadd1.2 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | odadd1.3 | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | simpl1 | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  𝐺  ∈  Abel ) | 
						
							| 5 |  | ablgrp | ⊢ ( 𝐺  ∈  Abel  →  𝐺  ∈  Grp ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  𝐺  ∈  Grp ) | 
						
							| 7 |  | simpl2 | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | simpl3 | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  𝐵  ∈  𝑋 ) | 
						
							| 9 | 2 3 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  +  𝐵 )  ∈  𝑋 ) | 
						
							| 10 | 6 7 8 9 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  ( 𝐴  +  𝐵 )  ∈  𝑋 ) | 
						
							| 11 | 2 1 | odcl | ⊢ ( ( 𝐴  +  𝐵 )  ∈  𝑋  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℕ0 ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℕ0 ) | 
						
							| 13 | 2 1 | odcl | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 14 | 7 13 | syl | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 15 | 2 1 | odcl | ⊢ ( 𝐵  ∈  𝑋  →  ( 𝑂 ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 16 | 8 15 | syl | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  ( 𝑂 ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 17 | 14 16 | nn0mulcld | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ∈  ℕ0 ) | 
						
							| 18 |  | simpr | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 ) | 
						
							| 19 | 18 | oveq2d | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  =  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  1 ) ) | 
						
							| 20 | 12 | nn0cnd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℂ ) | 
						
							| 21 | 20 | mulridd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  1 )  =  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) ) ) | 
						
							| 22 | 19 21 | eqtrd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  =  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) ) ) | 
						
							| 23 | 1 2 3 | odadd1 | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 25 | 22 24 | eqbrtrrd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∥  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 26 | 1 2 3 | odadd2 | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) | 
						
							| 28 | 18 | oveq1d | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 29 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 30 | 28 29 | eqtrdi | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 )  =  1 ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) )  =  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  1 ) ) | 
						
							| 32 | 31 21 | eqtrd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) )  =  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) ) ) | 
						
							| 33 | 27 32 | breqtrd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) ) ) | 
						
							| 34 |  | dvdseq | ⊢ ( ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℕ0  ∧  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ∈  ℕ0 )  ∧  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∥  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ∧  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) ) ) )  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  =  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 35 | 12 17 25 33 34 | syl22anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  1 )  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  =  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) ) ) |