| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odadd1.1 | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 2 |  | odadd1.2 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | odadd1.3 | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | ablgrp | ⊢ ( 𝐺  ∈  Abel  →  𝐺  ∈  Grp ) | 
						
							| 5 | 2 3 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  +  𝐵 )  ∈  𝑋 ) | 
						
							| 6 | 4 5 | syl3an1 | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  +  𝐵 )  ∈  𝑋 ) | 
						
							| 7 | 2 1 | odcl | ⊢ ( ( 𝐴  +  𝐵 )  ∈  𝑋  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℕ0 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℕ0 ) | 
						
							| 9 | 8 | nn0zd | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℤ ) | 
						
							| 10 | 2 1 | odcl | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 12 | 11 | nn0zd | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 13 | 2 1 | odcl | ⊢ ( 𝐵  ∈  𝑋  →  ( 𝑂 ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑂 ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 15 | 14 | nn0zd | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑂 ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 16 | 12 15 | gcdcld | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∈  ℕ0 ) | 
						
							| 17 | 16 | nn0zd | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ ) | 
						
							| 18 | 9 17 | zmulcld | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  0 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ ) | 
						
							| 20 |  | dvds0 | ⊢ ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  0 ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  0 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  0 ) | 
						
							| 22 |  | gcdeq0 | ⊢ ( ( ( 𝑂 ‘ 𝐴 )  ∈  ℤ  ∧  ( 𝑂 ‘ 𝐵 )  ∈  ℤ )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  0  ↔  ( ( 𝑂 ‘ 𝐴 )  =  0  ∧  ( 𝑂 ‘ 𝐵 )  =  0 ) ) ) | 
						
							| 23 | 12 15 22 | syl2anc | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  0  ↔  ( ( 𝑂 ‘ 𝐴 )  =  0  ∧  ( 𝑂 ‘ 𝐵 )  =  0 ) ) ) | 
						
							| 24 | 23 | biimpa | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  0 )  →  ( ( 𝑂 ‘ 𝐴 )  =  0  ∧  ( 𝑂 ‘ 𝐵 )  =  0 ) ) | 
						
							| 25 |  | oveq12 | ⊢ ( ( ( 𝑂 ‘ 𝐴 )  =  0  ∧  ( 𝑂 ‘ 𝐵 )  =  0 )  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  =  ( 0  ·  0 ) ) | 
						
							| 26 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 27 | 26 | mul01i | ⊢ ( 0  ·  0 )  =  0 | 
						
							| 28 | 25 27 | eqtrdi | ⊢ ( ( ( 𝑂 ‘ 𝐴 )  =  0  ∧  ( 𝑂 ‘ 𝐵 )  =  0 )  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  =  0 ) | 
						
							| 29 | 24 28 | syl | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  0 )  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  =  0 ) | 
						
							| 30 | 21 29 | breqtrrd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  0 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 31 |  | simpl1 | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  𝐺  ∈  Abel ) | 
						
							| 32 | 17 | adantr | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ ) | 
						
							| 33 | 12 | adantr | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 34 | 15 | adantr | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 35 |  | gcddvds | ⊢ ( ( ( 𝑂 ‘ 𝐴 )  ∈  ℤ  ∧  ( 𝑂 ‘ 𝐵 )  ∈  ℤ )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐴 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 36 | 33 34 35 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐴 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 37 | 36 | simpld | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐴 ) ) | 
						
							| 38 | 32 33 34 37 | dvdsmultr1d | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 39 |  | simpr | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 ) | 
						
							| 40 | 33 34 | zmulcld | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ ) | 
						
							| 41 |  | dvdsval2 | ⊢ ( ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0  ∧  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ↔  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ ) ) | 
						
							| 42 | 32 39 40 41 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ↔  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ ) ) | 
						
							| 43 | 38 42 | mpbid | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ ) | 
						
							| 44 |  | simpl2 | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  𝐴  ∈  𝑋 ) | 
						
							| 45 |  | simpl3 | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  𝐵  ∈  𝑋 ) | 
						
							| 46 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 47 | 2 46 3 | mulgdi | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) ( 𝐴  +  𝐵 ) )  =  ( ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐴 )  +  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) | 
						
							| 48 | 31 43 44 45 47 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) ( 𝐴  +  𝐵 ) )  =  ( ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐴 )  +  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) | 
						
							| 49 | 36 | simprd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐵 ) ) | 
						
							| 50 |  | dvdsval2 | ⊢ ( ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0  ∧  ( 𝑂 ‘ 𝐵 )  ∈  ℤ )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐵 )  ↔  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ ) ) | 
						
							| 51 | 32 39 34 50 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐵 )  ↔  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ ) ) | 
						
							| 52 | 49 51 | mpbid | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ ) | 
						
							| 53 |  | dvdsmul1 | ⊢ ( ( ( 𝑂 ‘ 𝐴 )  ∈  ℤ  ∧  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ )  →  ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝑂 ‘ 𝐴 )  ·  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) ) | 
						
							| 54 | 33 52 53 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝑂 ‘ 𝐴 )  ·  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) ) | 
						
							| 55 | 33 | zcnd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 56 | 34 | zcnd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 57 | 32 | zcnd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 58 | 55 56 57 39 | divassd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  =  ( ( 𝑂 ‘ 𝐴 )  ·  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) ) | 
						
							| 59 | 54 58 | breqtrrd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐴 )  ∥  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) | 
						
							| 60 | 31 4 | syl | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  𝐺  ∈  Grp ) | 
						
							| 61 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 62 | 2 1 46 61 | oddvds | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ )  →  ( ( 𝑂 ‘ 𝐴 )  ∥  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ↔  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐴 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 63 | 60 44 43 62 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  ∥  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ↔  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐴 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 64 | 59 63 | mpbid | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐴 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 65 |  | dvdsval2 | ⊢ ( ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℤ )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐴 )  ↔  ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ ) ) | 
						
							| 66 | 32 39 33 65 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐴 )  ↔  ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ ) ) | 
						
							| 67 | 37 66 | mpbid | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ ) | 
						
							| 68 |  | dvdsmul1 | ⊢ ( ( ( 𝑂 ‘ 𝐵 )  ∈  ℤ  ∧  ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ )  →  ( 𝑂 ‘ 𝐵 )  ∥  ( ( 𝑂 ‘ 𝐵 )  ·  ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) ) | 
						
							| 69 | 34 67 68 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐵 )  ∥  ( ( 𝑂 ‘ 𝐵 )  ·  ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) ) | 
						
							| 70 | 55 56 | mulcomd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  =  ( ( 𝑂 ‘ 𝐵 )  ·  ( 𝑂 ‘ 𝐴 ) ) ) | 
						
							| 71 | 70 | oveq1d | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  =  ( ( ( 𝑂 ‘ 𝐵 )  ·  ( 𝑂 ‘ 𝐴 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) | 
						
							| 72 | 56 55 57 39 | divassd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐵 )  ·  ( 𝑂 ‘ 𝐴 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  =  ( ( 𝑂 ‘ 𝐵 )  ·  ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) ) | 
						
							| 73 | 71 72 | eqtrd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  =  ( ( 𝑂 ‘ 𝐵 )  ·  ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) ) | 
						
							| 74 | 69 73 | breqtrrd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐵 )  ∥  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) | 
						
							| 75 | 2 1 46 61 | oddvds | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  𝑋  ∧  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ )  →  ( ( 𝑂 ‘ 𝐵 )  ∥  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ↔  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐵 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 76 | 60 45 43 75 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐵 )  ∥  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ↔  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐵 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 77 | 74 76 | mpbid | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐵 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 78 | 64 77 | oveq12d | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐴 )  +  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐵 ) )  =  ( ( 0g ‘ 𝐺 )  +  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 79 | 2 61 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 80 | 2 3 61 | grplid | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 0g ‘ 𝐺 )  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  +  ( 0g ‘ 𝐺 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 81 | 60 79 80 | syl2anc2 | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 0g ‘ 𝐺 )  +  ( 0g ‘ 𝐺 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 82 | 48 78 81 | 3eqtrd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) ( 𝐴  +  𝐵 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 83 | 6 | adantr | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝐴  +  𝐵 )  ∈  𝑋 ) | 
						
							| 84 | 2 1 46 61 | oddvds | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝐴  +  𝐵 )  ∈  𝑋  ∧  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∥  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ↔  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) ( 𝐴  +  𝐵 ) )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 85 | 60 83 43 84 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∥  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ↔  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) ( 𝐴  +  𝐵 ) )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 86 | 82 85 | mpbird | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∥  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) | 
						
							| 87 | 9 | adantr | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℤ ) | 
						
							| 88 |  | dvdsmulcr | ⊢ ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℤ  ∧  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ  ∧  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 ) )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ↔  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∥  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) ) | 
						
							| 89 | 87 43 32 39 88 | syl112anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ↔  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∥  ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) ) | 
						
							| 90 | 86 89 | mpbird | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) | 
						
							| 91 | 40 | zcnd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 92 | 91 57 39 | divcan1d | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  =  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 93 | 90 92 | breqtrd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 94 | 30 93 | pm2.61dane | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) ) ) |