| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odadd1.1 | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 2 |  | odadd1.2 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | odadd1.3 | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 | 2 1 | odcl | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 6 | 5 | nn0zd | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 7 | 2 1 | odcl | ⊢ ( 𝐵  ∈  𝑋  →  ( 𝑂 ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑂 ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 9 | 8 | nn0zd | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑂 ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 10 | 6 9 | zmulcld | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  0 )  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ ) | 
						
							| 12 |  | dvds0 | ⊢ ( ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ∥  0 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  0 )  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ∥  0 ) | 
						
							| 14 |  | simpr | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  0 )  →  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  0 ) | 
						
							| 15 | 14 | sq0id | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 )  =  0 ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  0 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) )  =  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  0 ) ) | 
						
							| 17 |  | ablgrp | ⊢ ( 𝐺  ∈  Abel  →  𝐺  ∈  Grp ) | 
						
							| 18 | 2 3 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  +  𝐵 )  ∈  𝑋 ) | 
						
							| 19 | 17 18 | syl3an1 | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  +  𝐵 )  ∈  𝑋 ) | 
						
							| 20 | 2 1 | odcl | ⊢ ( ( 𝐴  +  𝐵 )  ∈  𝑋  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℕ0 ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℕ0 ) | 
						
							| 22 | 21 | nn0zd | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℤ ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  0 )  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℤ ) | 
						
							| 24 | 23 | zcnd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  0 )  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℂ ) | 
						
							| 25 | 24 | mul01d | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  0 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  0 )  =  0 ) | 
						
							| 26 | 16 25 | eqtrd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  0 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) )  =  0 ) | 
						
							| 27 | 13 26 | breqtrrd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  =  0 )  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) | 
						
							| 28 | 6 | adantr | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 29 | 9 | adantr | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 30 | 28 29 | gcdcld | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∈  ℕ0 ) | 
						
							| 31 | 30 | nn0cnd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 32 | 31 | sqvald | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 )  =  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  ·  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) )  =  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  ·  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) ) | 
						
							| 34 |  | gcddvds | ⊢ ( ( ( 𝑂 ‘ 𝐴 )  ∈  ℤ  ∧  ( 𝑂 ‘ 𝐵 )  ∈  ℤ )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐴 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 35 | 28 29 34 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐴 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 36 | 35 | simpld | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐴 ) ) | 
						
							| 37 | 30 | nn0zd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ ) | 
						
							| 38 |  | simpr | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 ) | 
						
							| 39 |  | dvdsval2 | ⊢ ( ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℤ )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐴 )  ↔  ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ ) ) | 
						
							| 40 | 37 38 28 39 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐴 )  ↔  ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ ) ) | 
						
							| 41 | 36 40 | mpbid | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ ) | 
						
							| 42 | 41 | zcnd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℂ ) | 
						
							| 43 | 35 | simprd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐵 ) ) | 
						
							| 44 |  | dvdsval2 | ⊢ ( ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0  ∧  ( 𝑂 ‘ 𝐵 )  ∈  ℤ )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐵 )  ↔  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ ) ) | 
						
							| 45 | 37 38 29 44 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∥  ( 𝑂 ‘ 𝐵 )  ↔  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ ) ) | 
						
							| 46 | 43 45 | mpbid | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ ) | 
						
							| 47 | 46 | zcnd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℂ ) | 
						
							| 48 | 42 31 47 31 | mul4d | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  =  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  ·  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) ) | 
						
							| 49 | 28 | zcnd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 50 | 49 31 38 | divcan1d | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  =  ( 𝑂 ‘ 𝐴 ) ) | 
						
							| 51 | 29 | zcnd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 52 | 51 31 38 | divcan1d | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  =  ( 𝑂 ‘ 𝐵 ) ) | 
						
							| 53 | 50 52 | oveq12d | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  =  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 54 | 33 48 53 | 3eqtr2d | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  ·  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) )  =  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 55 | 22 | adantr | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℤ ) | 
						
							| 56 |  | dvdsmul2 | ⊢ ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℤ  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℤ )  →  ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ) | 
						
							| 57 | 55 28 56 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ) | 
						
							| 58 |  | simpl1 | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  𝐺  ∈  Abel ) | 
						
							| 59 | 55 29 | zmulcld | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ ) | 
						
							| 60 |  | simpl2 | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  𝐴  ∈  𝑋 ) | 
						
							| 61 |  | simpl3 | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  𝐵  ∈  𝑋 ) | 
						
							| 62 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 63 | 2 62 3 | mulgdi | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) ( 𝐴  +  𝐵 ) )  =  ( ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 )  +  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) | 
						
							| 64 | 58 59 60 61 63 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) ( 𝐴  +  𝐵 ) )  =  ( ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 )  +  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) | 
						
							| 65 |  | dvdsmul2 | ⊢ ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℤ  ∧  ( 𝑂 ‘ 𝐵 )  ∈  ℤ )  →  ( 𝑂 ‘ 𝐵 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 66 | 55 29 65 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐵 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 67 | 58 17 | syl | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  𝐺  ∈  Grp ) | 
						
							| 68 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 69 | 2 1 62 68 | oddvds | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  𝑋  ∧  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ )  →  ( ( 𝑂 ‘ 𝐵 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) )  ↔  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐵 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 70 | 67 61 59 69 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐵 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) )  ↔  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐵 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 71 | 66 70 | mpbid | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐵 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 72 | 71 | oveq2d | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 )  +  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐵 ) )  =  ( ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 )  +  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 73 | 64 72 | eqtrd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) ( 𝐴  +  𝐵 ) )  =  ( ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 )  +  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 74 |  | dvdsmul1 | ⊢ ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℤ  ∧  ( 𝑂 ‘ 𝐵 )  ∈  ℤ )  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 75 | 55 29 74 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 76 | 19 | adantr | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝐴  +  𝐵 )  ∈  𝑋 ) | 
						
							| 77 | 2 1 62 68 | oddvds | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝐴  +  𝐵 )  ∈  𝑋  ∧  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) )  ↔  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) ( 𝐴  +  𝐵 ) )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 78 | 67 76 59 77 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) )  ↔  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) ( 𝐴  +  𝐵 ) )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 79 | 75 78 | mpbid | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) ( 𝐴  +  𝐵 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 80 | 2 62 | mulgcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 )  ∈  𝑋 ) | 
						
							| 81 | 67 59 60 80 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 )  ∈  𝑋 ) | 
						
							| 82 | 2 3 68 | grprid | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 )  ∈  𝑋 )  →  ( ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 )  +  ( 0g ‘ 𝐺 ) )  =  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) | 
						
							| 83 | 67 81 82 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 )  +  ( 0g ‘ 𝐺 ) )  =  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) | 
						
							| 84 | 73 79 83 | 3eqtr3rd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 85 | 2 1 62 68 | oddvds | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ )  →  ( ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) )  ↔  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 86 | 67 60 59 85 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) )  ↔  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 87 | 84 86 | mpbird | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 88 | 55 28 | zmulcld | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ∈  ℤ ) | 
						
							| 89 |  | dvdsgcd | ⊢ ( ( ( 𝑂 ‘ 𝐴 )  ∈  ℤ  ∧  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ∈  ℤ  ∧  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ )  →  ( ( ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ∧  ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) )  →  ( 𝑂 ‘ 𝐴 )  ∥  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  gcd  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ) ) ) | 
						
							| 90 | 28 88 59 89 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ∧  ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) )  →  ( 𝑂 ‘ 𝐴 )  ∥  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  gcd  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ) ) ) | 
						
							| 91 | 57 87 90 | mp2and | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐴 )  ∥  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  gcd  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ) ) | 
						
							| 92 | 21 | adantr | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℕ0 ) | 
						
							| 93 |  | mulgcd | ⊢ ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℕ0  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℤ  ∧  ( 𝑂 ‘ 𝐵 )  ∈  ℤ )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  gcd  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) )  =  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) | 
						
							| 94 | 92 28 29 93 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  gcd  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) )  =  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) | 
						
							| 95 | 91 94 | breqtrd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) | 
						
							| 96 | 50 95 | eqbrtrd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) | 
						
							| 97 |  | dvdsmulcr | ⊢ ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ  ∧  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℤ  ∧  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 ) )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ↔  ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 98 | 41 55 37 38 97 | syl112anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ↔  ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 99 | 96 98 | mpbid | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) ) ) | 
						
							| 100 | 2 62 3 | mulgdi | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ∈  ℤ  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) ( 𝐴  +  𝐵 ) )  =  ( ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐴 )  +  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) | 
						
							| 101 | 58 88 60 61 100 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) ( 𝐴  +  𝐵 ) )  =  ( ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐴 )  +  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) | 
						
							| 102 | 2 1 62 68 | oddvds | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ∈  ℤ )  →  ( ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ↔  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐴 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 103 | 67 60 88 102 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ↔  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐴 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 104 | 57 103 | mpbid | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐴 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 105 | 104 | oveq1d | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐴 )  +  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) )  =  ( ( 0g ‘ 𝐺 )  +  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) | 
						
							| 106 | 101 105 | eqtrd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) ( 𝐴  +  𝐵 ) )  =  ( ( 0g ‘ 𝐺 )  +  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) | 
						
							| 107 |  | dvdsmul1 | ⊢ ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℤ  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℤ )  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ) | 
						
							| 108 | 55 28 107 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ) | 
						
							| 109 | 2 1 62 68 | oddvds | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝐴  +  𝐵 )  ∈  𝑋  ∧  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ∈  ℤ )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ↔  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) ( 𝐴  +  𝐵 ) )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 110 | 67 76 88 109 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ↔  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) ( 𝐴  +  𝐵 ) )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 111 | 108 110 | mpbid | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) ( 𝐴  +  𝐵 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 112 | 2 62 | mulgcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ∈  ℤ  ∧  𝐵  ∈  𝑋 )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 )  ∈  𝑋 ) | 
						
							| 113 | 67 88 61 112 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 )  ∈  𝑋 ) | 
						
							| 114 | 2 3 68 | grplid | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 )  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  +  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) )  =  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 115 | 67 113 114 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 0g ‘ 𝐺 )  +  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) )  =  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 116 | 106 111 115 | 3eqtr3rd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 117 | 2 1 62 68 | oddvds | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  𝑋  ∧  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ∈  ℤ )  →  ( ( 𝑂 ‘ 𝐵 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ↔  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 118 | 67 61 88 117 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐵 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ↔  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 119 | 116 118 | mpbird | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐵 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) ) ) | 
						
							| 120 |  | dvdsgcd | ⊢ ( ( ( 𝑂 ‘ 𝐵 )  ∈  ℤ  ∧  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ∈  ℤ  ∧  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ )  →  ( ( ( 𝑂 ‘ 𝐵 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ∧  ( 𝑂 ‘ 𝐵 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) )  →  ( 𝑂 ‘ 𝐵 )  ∥  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  gcd  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ) ) ) | 
						
							| 121 | 29 88 59 120 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐵 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  ∧  ( 𝑂 ‘ 𝐵 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) )  →  ( 𝑂 ‘ 𝐵 )  ∥  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  gcd  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ) ) ) | 
						
							| 122 | 119 66 121 | mp2and | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐵 )  ∥  ( ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐴 ) )  gcd  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( 𝑂 ‘ 𝐵 ) ) ) ) | 
						
							| 123 | 122 94 | breqtrd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 𝑂 ‘ 𝐵 )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) | 
						
							| 124 | 52 123 | eqbrtrd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) | 
						
							| 125 |  | dvdsmulcr | ⊢ ( ( ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ  ∧  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℤ  ∧  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 ) )  →  ( ( ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ↔  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 126 | 46 55 37 38 125 | syl112anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ↔  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 127 | 124 126 | mpbid | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) ) ) | 
						
							| 128 | 41 46 | gcdcld | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  gcd  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  ∈  ℕ0 ) | 
						
							| 129 | 128 | nn0cnd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  gcd  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  ∈  ℂ ) | 
						
							| 130 |  | 1cnd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  1  ∈  ℂ ) | 
						
							| 131 | 31 | mullidd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( 1  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  =  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 132 | 50 52 | oveq12d | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  gcd  ( ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  =  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) | 
						
							| 133 |  | mulgcdr | ⊢ ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ  ∧  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∈  ℕ0 )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  gcd  ( ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  =  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  gcd  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) | 
						
							| 134 | 41 46 30 133 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  gcd  ( ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  =  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  gcd  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) | 
						
							| 135 | 131 132 134 | 3eqtr2rd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  gcd  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  =  ( 1  ·  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) ) | 
						
							| 136 | 129 130 31 38 135 | mulcan2ad | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  gcd  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  =  1 ) | 
						
							| 137 |  | coprmdvds2 | ⊢ ( ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ  ∧  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∈  ℤ  ∧  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℤ )  ∧  ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  gcd  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  =  1 )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∧  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) ) )  →  ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  ∥  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 138 | 41 46 55 136 137 | syl31anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∧  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ∥  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) ) )  →  ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  ∥  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 139 | 99 127 138 | mp2and | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  ∥  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) ) ) | 
						
							| 140 | 41 46 | zmulcld | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  ∈  ℤ ) | 
						
							| 141 |  | zsqcl | ⊢ ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ∈  ℤ  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 )  ∈  ℤ ) | 
						
							| 142 | 37 141 | syl | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 )  ∈  ℤ ) | 
						
							| 143 |  | dvdsmulc | ⊢ ( ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  ∈  ℤ  ∧  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ∈  ℤ  ∧  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 )  ∈  ℤ )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  ∥  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  ·  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) ) | 
						
							| 144 | 140 55 142 143 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  ∥  ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  ·  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) ) | 
						
							| 145 | 139 144 | mpd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( ( ( 𝑂 ‘ 𝐴 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) )  ·  ( ( 𝑂 ‘ 𝐵 )  /  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ) )  ·  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) | 
						
							| 146 | 54 145 | eqbrtrrd | ⊢ ( ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) )  ≠  0 )  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) | 
						
							| 147 | 27 146 | pm2.61dane | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝑂 ‘ 𝐴 )  ·  ( 𝑂 ‘ 𝐵 ) )  ∥  ( ( 𝑂 ‘ ( 𝐴  +  𝐵 ) )  ·  ( ( ( 𝑂 ‘ 𝐴 )  gcd  ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) |