| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odcau.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
odcau.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 3 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 4 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑋 ∈ Fin ) |
| 5 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑃 ∈ ℙ ) |
| 6 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 7 |
6
|
a1i |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → 1 ∈ ℕ0 ) |
| 8 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 9 |
5 8
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑃 ∈ ℕ ) |
| 10 |
9
|
nncnd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑃 ∈ ℂ ) |
| 11 |
10
|
exp1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → ( 𝑃 ↑ 1 ) = 𝑃 ) |
| 12 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) |
| 13 |
11 12
|
eqbrtrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → ( 𝑃 ↑ 1 ) ∥ ( ♯ ‘ 𝑋 ) ) |
| 14 |
1 3 4 5 7 13
|
sylow1 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → ∃ 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 1 ) ) |
| 15 |
11
|
eqeq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → ( ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 1 ) ↔ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 1 ) ↔ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) |
| 17 |
|
fvex |
⊢ ( 0g ‘ 𝐺 ) ∈ V |
| 18 |
|
hashsng |
⊢ ( ( 0g ‘ 𝐺 ) ∈ V → ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) = 1 ) |
| 19 |
17 18
|
ax-mp |
⊢ ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) = 1 |
| 20 |
|
simprr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ( ♯ ‘ 𝑠 ) = 𝑃 ) |
| 21 |
5
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → 𝑃 ∈ ℙ ) |
| 22 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 23 |
21 22
|
syl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 24 |
20 23
|
eqeltrd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ( ♯ ‘ 𝑠 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 25 |
|
eluz2gt1 |
⊢ ( ( ♯ ‘ 𝑠 ) ∈ ( ℤ≥ ‘ 2 ) → 1 < ( ♯ ‘ 𝑠 ) ) |
| 26 |
24 25
|
syl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → 1 < ( ♯ ‘ 𝑠 ) ) |
| 27 |
19 26
|
eqbrtrid |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) < ( ♯ ‘ 𝑠 ) ) |
| 28 |
|
snfi |
⊢ { ( 0g ‘ 𝐺 ) } ∈ Fin |
| 29 |
4
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → 𝑋 ∈ Fin ) |
| 30 |
1
|
subgss |
⊢ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → 𝑠 ⊆ 𝑋 ) |
| 31 |
30
|
ad2antrl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → 𝑠 ⊆ 𝑋 ) |
| 32 |
29 31
|
ssfid |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → 𝑠 ∈ Fin ) |
| 33 |
|
hashsdom |
⊢ ( ( { ( 0g ‘ 𝐺 ) } ∈ Fin ∧ 𝑠 ∈ Fin ) → ( ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) < ( ♯ ‘ 𝑠 ) ↔ { ( 0g ‘ 𝐺 ) } ≺ 𝑠 ) ) |
| 34 |
28 32 33
|
sylancr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ( ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) < ( ♯ ‘ 𝑠 ) ↔ { ( 0g ‘ 𝐺 ) } ≺ 𝑠 ) ) |
| 35 |
27 34
|
mpbid |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → { ( 0g ‘ 𝐺 ) } ≺ 𝑠 ) |
| 36 |
|
sdomdif |
⊢ ( { ( 0g ‘ 𝐺 ) } ≺ 𝑠 → ( 𝑠 ∖ { ( 0g ‘ 𝐺 ) } ) ≠ ∅ ) |
| 37 |
35 36
|
syl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ( 𝑠 ∖ { ( 0g ‘ 𝐺 ) } ) ≠ ∅ ) |
| 38 |
|
n0 |
⊢ ( ( 𝑠 ∖ { ( 0g ‘ 𝐺 ) } ) ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝐺 ) } ) ) |
| 39 |
37 38
|
sylib |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ∃ 𝑔 𝑔 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝐺 ) } ) ) |
| 40 |
|
eldifsn |
⊢ ( 𝑔 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝐺 ) } ) ↔ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) |
| 41 |
31
|
adantrr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → 𝑠 ⊆ 𝑋 ) |
| 42 |
|
simprrl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → 𝑔 ∈ 𝑠 ) |
| 43 |
41 42
|
sseldd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → 𝑔 ∈ 𝑋 ) |
| 44 |
|
simprrr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → 𝑔 ≠ ( 0g ‘ 𝐺 ) ) |
| 45 |
|
simprll |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 46 |
32
|
adantrr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → 𝑠 ∈ Fin ) |
| 47 |
2
|
odsubdvds |
⊢ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑠 ∈ Fin ∧ 𝑔 ∈ 𝑠 ) → ( 𝑂 ‘ 𝑔 ) ∥ ( ♯ ‘ 𝑠 ) ) |
| 48 |
45 46 42 47
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( 𝑂 ‘ 𝑔 ) ∥ ( ♯ ‘ 𝑠 ) ) |
| 49 |
|
simprlr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( ♯ ‘ 𝑠 ) = 𝑃 ) |
| 50 |
48 49
|
breqtrd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( 𝑂 ‘ 𝑔 ) ∥ 𝑃 ) |
| 51 |
3
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → 𝐺 ∈ Grp ) |
| 52 |
4
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → 𝑋 ∈ Fin ) |
| 53 |
1 2
|
odcl2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑔 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑔 ) ∈ ℕ ) |
| 54 |
51 52 43 53
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( 𝑂 ‘ 𝑔 ) ∈ ℕ ) |
| 55 |
|
dvdsprime |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑂 ‘ 𝑔 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝑔 ) ∥ 𝑃 ↔ ( ( 𝑂 ‘ 𝑔 ) = 𝑃 ∨ ( 𝑂 ‘ 𝑔 ) = 1 ) ) ) |
| 56 |
5 54 55
|
syl2an2r |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( ( 𝑂 ‘ 𝑔 ) ∥ 𝑃 ↔ ( ( 𝑂 ‘ 𝑔 ) = 𝑃 ∨ ( 𝑂 ‘ 𝑔 ) = 1 ) ) ) |
| 57 |
50 56
|
mpbid |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( ( 𝑂 ‘ 𝑔 ) = 𝑃 ∨ ( 𝑂 ‘ 𝑔 ) = 1 ) ) |
| 58 |
57
|
ord |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( ¬ ( 𝑂 ‘ 𝑔 ) = 𝑃 → ( 𝑂 ‘ 𝑔 ) = 1 ) ) |
| 59 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 60 |
2 59 1
|
odeq1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑔 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝑔 ) = 1 ↔ 𝑔 = ( 0g ‘ 𝐺 ) ) ) |
| 61 |
3 43 60
|
syl2an2r |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( ( 𝑂 ‘ 𝑔 ) = 1 ↔ 𝑔 = ( 0g ‘ 𝐺 ) ) ) |
| 62 |
58 61
|
sylibd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( ¬ ( 𝑂 ‘ 𝑔 ) = 𝑃 → 𝑔 = ( 0g ‘ 𝐺 ) ) ) |
| 63 |
62
|
necon1ad |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( 𝑔 ≠ ( 0g ‘ 𝐺 ) → ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) |
| 64 |
44 63
|
mpd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( 𝑂 ‘ 𝑔 ) = 𝑃 ) |
| 65 |
43 64
|
jca |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ∧ ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) ) ) → ( 𝑔 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) |
| 66 |
65
|
expr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ( ( 𝑔 ∈ 𝑠 ∧ 𝑔 ≠ ( 0g ‘ 𝐺 ) ) → ( 𝑔 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) ) |
| 67 |
40 66
|
biimtrid |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ( 𝑔 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝐺 ) } ) → ( 𝑔 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) ) |
| 68 |
67
|
eximdv |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ( ∃ 𝑔 𝑔 ∈ ( 𝑠 ∖ { ( 0g ‘ 𝐺 ) } ) → ∃ 𝑔 ( 𝑔 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) ) |
| 69 |
39 68
|
mpd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ∃ 𝑔 ( 𝑔 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) |
| 70 |
|
df-rex |
⊢ ( ∃ 𝑔 ∈ 𝑋 ( 𝑂 ‘ 𝑔 ) = 𝑃 ↔ ∃ 𝑔 ( 𝑔 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) |
| 71 |
69 70
|
sylibr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑠 ) = 𝑃 ) ) → ∃ 𝑔 ∈ 𝑋 ( 𝑂 ‘ 𝑔 ) = 𝑃 ) |
| 72 |
71
|
expr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑠 ) = 𝑃 → ∃ 𝑔 ∈ 𝑋 ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) |
| 73 |
16 72
|
sylbid |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) ∧ 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 1 ) → ∃ 𝑔 ∈ 𝑋 ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) |
| 74 |
73
|
rexlimdva |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → ( ∃ 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 1 ) → ∃ 𝑔 ∈ 𝑋 ( 𝑂 ‘ 𝑔 ) = 𝑃 ) ) |
| 75 |
14 74
|
mpd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝑃 ∥ ( ♯ ‘ 𝑋 ) ) → ∃ 𝑔 ∈ 𝑋 ( 𝑂 ‘ 𝑔 ) = 𝑃 ) |