Metamath Proof Explorer


Theorem odcl2

Description: The order of an element of a finite group is finite. (Contributed by Mario Carneiro, 14-Jan-2015)

Ref Expression
Hypotheses odcl2.1 𝑋 = ( Base ‘ 𝐺 )
odcl2.2 𝑂 = ( od ‘ 𝐺 )
Assertion odcl2 ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋 ) → ( 𝑂𝐴 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 odcl2.1 𝑋 = ( Base ‘ 𝐺 )
2 odcl2.2 𝑂 = ( od ‘ 𝐺 )
3 1 2 odcl ( 𝐴𝑋 → ( 𝑂𝐴 ) ∈ ℕ0 )
4 3 adantl ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( 𝑂𝐴 ) ∈ ℕ0 )
5 elnn0 ( ( 𝑂𝐴 ) ∈ ℕ0 ↔ ( ( 𝑂𝐴 ) ∈ ℕ ∨ ( 𝑂𝐴 ) = 0 ) )
6 4 5 sylib ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( ( 𝑂𝐴 ) ∈ ℕ ∨ ( 𝑂𝐴 ) = 0 ) )
7 6 ord ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( ¬ ( 𝑂𝐴 ) ∈ ℕ → ( 𝑂𝐴 ) = 0 ) )
8 eqid ( .g𝐺 ) = ( .g𝐺 )
9 eqid ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g𝐺 ) 𝐴 ) ) = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g𝐺 ) 𝐴 ) )
10 1 2 8 9 odinf ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ( 𝑂𝐴 ) = 0 ) → ¬ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g𝐺 ) 𝐴 ) ) ∈ Fin )
11 1 2 8 9 odf1 ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( ( 𝑂𝐴 ) = 0 ↔ ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g𝐺 ) 𝐴 ) ) : ℤ –1-1𝑋 ) )
12 11 biimp3a ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ( 𝑂𝐴 ) = 0 ) → ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g𝐺 ) 𝐴 ) ) : ℤ –1-1𝑋 )
13 f1f ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g𝐺 ) 𝐴 ) ) : ℤ –1-1𝑋 → ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g𝐺 ) 𝐴 ) ) : ℤ ⟶ 𝑋 )
14 frn ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g𝐺 ) 𝐴 ) ) : ℤ ⟶ 𝑋 → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g𝐺 ) 𝐴 ) ) ⊆ 𝑋 )
15 ssfi ( ( 𝑋 ∈ Fin ∧ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g𝐺 ) 𝐴 ) ) ⊆ 𝑋 ) → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g𝐺 ) 𝐴 ) ) ∈ Fin )
16 15 expcom ( ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g𝐺 ) 𝐴 ) ) ⊆ 𝑋 → ( 𝑋 ∈ Fin → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g𝐺 ) 𝐴 ) ) ∈ Fin ) )
17 12 13 14 16 4syl ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ( 𝑂𝐴 ) = 0 ) → ( 𝑋 ∈ Fin → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g𝐺 ) 𝐴 ) ) ∈ Fin ) )
18 10 17 mtod ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ( 𝑂𝐴 ) = 0 ) → ¬ 𝑋 ∈ Fin )
19 18 3expia ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( ( 𝑂𝐴 ) = 0 → ¬ 𝑋 ∈ Fin ) )
20 7 19 syld ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( ¬ ( 𝑂𝐴 ) ∈ ℕ → ¬ 𝑋 ∈ Fin ) )
21 20 con4d ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( 𝑋 ∈ Fin → ( 𝑂𝐴 ) ∈ ℕ ) )
22 21 3impia ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋𝑋 ∈ Fin ) → ( 𝑂𝐴 ) ∈ ℕ )
23 22 3com23 ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴𝑋 ) → ( 𝑂𝐴 ) ∈ ℕ )