Step |
Hyp |
Ref |
Expression |
1 |
|
odcl2.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
odcl2.2 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
1 2
|
odcl |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
4 |
3
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
5 |
|
elnn0 |
⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ↔ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∨ ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
6 |
4 5
|
sylib |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∨ ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
7 |
6
|
ord |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ¬ ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
8 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
9 |
|
eqid |
⊢ ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) |
10 |
1 2 8 9
|
odinf |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ¬ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ Fin ) |
11 |
1 2 8 9
|
odf1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 ↔ ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ℤ –1-1→ 𝑋 ) ) |
12 |
11
|
biimp3a |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ℤ –1-1→ 𝑋 ) |
13 |
|
f1f |
⊢ ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ℤ –1-1→ 𝑋 → ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ℤ ⟶ 𝑋 ) |
14 |
|
frn |
⊢ ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ℤ ⟶ 𝑋 → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ⊆ 𝑋 ) |
15 |
|
ssfi |
⊢ ( ( 𝑋 ∈ Fin ∧ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ⊆ 𝑋 ) → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ Fin ) |
16 |
15
|
expcom |
⊢ ( ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ⊆ 𝑋 → ( 𝑋 ∈ Fin → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ Fin ) ) |
17 |
12 13 14 16
|
4syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑋 ∈ Fin → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ Fin ) ) |
18 |
10 17
|
mtod |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ¬ 𝑋 ∈ Fin ) |
19 |
18
|
3expia |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 → ¬ 𝑋 ∈ Fin ) ) |
20 |
7 19
|
syld |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ¬ ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ¬ 𝑋 ∈ Fin ) ) |
21 |
20
|
con4d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑋 ∈ Fin → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ) |
22 |
21
|
3impia |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑋 ∈ Fin ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |
23 |
22
|
3com23 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |