Metamath Proof Explorer


Theorem odcld

Description: The order of a group element is always a nonnegative integer, deduction form of odcl . (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses odcld.1 𝐵 = ( Base ‘ 𝐺 )
odcld.2 𝑂 = ( od ‘ 𝐺 )
odcld.3 ( 𝜑𝐴𝐵 )
Assertion odcld ( 𝜑 → ( 𝑂𝐴 ) ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 odcld.1 𝐵 = ( Base ‘ 𝐺 )
2 odcld.2 𝑂 = ( od ‘ 𝐺 )
3 odcld.3 ( 𝜑𝐴𝐵 )
4 1 2 odcl ( 𝐴𝐵 → ( 𝑂𝐴 ) ∈ ℕ0 )
5 3 4 syl ( 𝜑 → ( 𝑂𝐴 ) ∈ ℕ0 )