Metamath Proof Explorer
Description: The order of a group element is always a nonnegative integer, deduction
form of odcl . (Contributed by Rohan Ridenour, 3-Aug-2023)
|
|
Ref |
Expression |
|
Hypotheses |
odcld.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
|
odcld.2 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
|
|
odcld.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
|
Assertion |
odcld |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
odcld.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
odcld.2 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
|
odcld.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
4 |
1 2
|
odcl |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
5 |
3 4
|
syl |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |