| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq2 |
⊢ ( 𝑗 = 0 → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑗 ↔ ( ( 2 · 𝑛 ) + 1 ) = 0 ) ) |
| 2 |
1
|
rexbidv |
⊢ ( 𝑗 = 0 → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑗 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 0 ) ) |
| 3 |
|
eqeq2 |
⊢ ( 𝑗 = 0 → ( ( 𝑘 · 2 ) = 𝑗 ↔ ( 𝑘 · 2 ) = 0 ) ) |
| 4 |
3
|
rexbidv |
⊢ ( 𝑗 = 0 → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑗 ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 0 ) ) |
| 5 |
2 4
|
orbi12d |
⊢ ( 𝑗 = 0 → ( ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑗 ∨ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑗 ) ↔ ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 0 ∨ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 0 ) ) ) |
| 6 |
|
eqeq2 |
⊢ ( 𝑗 = 𝑚 → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑗 ↔ ( ( 2 · 𝑛 ) + 1 ) = 𝑚 ) ) |
| 7 |
6
|
rexbidv |
⊢ ( 𝑗 = 𝑚 → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑗 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑚 ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑛 = 𝑥 → ( 2 · 𝑛 ) = ( 2 · 𝑥 ) ) |
| 9 |
8
|
oveq1d |
⊢ ( 𝑛 = 𝑥 → ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · 𝑥 ) + 1 ) ) |
| 10 |
9
|
eqeq1d |
⊢ ( 𝑛 = 𝑥 → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑚 ↔ ( ( 2 · 𝑥 ) + 1 ) = 𝑚 ) ) |
| 11 |
10
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑚 ↔ ∃ 𝑥 ∈ ℤ ( ( 2 · 𝑥 ) + 1 ) = 𝑚 ) |
| 12 |
7 11
|
bitrdi |
⊢ ( 𝑗 = 𝑚 → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑗 ↔ ∃ 𝑥 ∈ ℤ ( ( 2 · 𝑥 ) + 1 ) = 𝑚 ) ) |
| 13 |
|
eqeq2 |
⊢ ( 𝑗 = 𝑚 → ( ( 𝑘 · 2 ) = 𝑗 ↔ ( 𝑘 · 2 ) = 𝑚 ) ) |
| 14 |
13
|
rexbidv |
⊢ ( 𝑗 = 𝑚 → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑗 ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑚 ) ) |
| 15 |
|
oveq1 |
⊢ ( 𝑘 = 𝑦 → ( 𝑘 · 2 ) = ( 𝑦 · 2 ) ) |
| 16 |
15
|
eqeq1d |
⊢ ( 𝑘 = 𝑦 → ( ( 𝑘 · 2 ) = 𝑚 ↔ ( 𝑦 · 2 ) = 𝑚 ) ) |
| 17 |
16
|
cbvrexvw |
⊢ ( ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑚 ↔ ∃ 𝑦 ∈ ℤ ( 𝑦 · 2 ) = 𝑚 ) |
| 18 |
14 17
|
bitrdi |
⊢ ( 𝑗 = 𝑚 → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑗 ↔ ∃ 𝑦 ∈ ℤ ( 𝑦 · 2 ) = 𝑚 ) ) |
| 19 |
12 18
|
orbi12d |
⊢ ( 𝑗 = 𝑚 → ( ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑗 ∨ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑗 ) ↔ ( ∃ 𝑥 ∈ ℤ ( ( 2 · 𝑥 ) + 1 ) = 𝑚 ∨ ∃ 𝑦 ∈ ℤ ( 𝑦 · 2 ) = 𝑚 ) ) ) |
| 20 |
|
eqeq2 |
⊢ ( 𝑗 = ( 𝑚 + 1 ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑗 ↔ ( ( 2 · 𝑛 ) + 1 ) = ( 𝑚 + 1 ) ) ) |
| 21 |
20
|
rexbidv |
⊢ ( 𝑗 = ( 𝑚 + 1 ) → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑗 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = ( 𝑚 + 1 ) ) ) |
| 22 |
|
eqeq2 |
⊢ ( 𝑗 = ( 𝑚 + 1 ) → ( ( 𝑘 · 2 ) = 𝑗 ↔ ( 𝑘 · 2 ) = ( 𝑚 + 1 ) ) ) |
| 23 |
22
|
rexbidv |
⊢ ( 𝑗 = ( 𝑚 + 1 ) → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑗 ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = ( 𝑚 + 1 ) ) ) |
| 24 |
21 23
|
orbi12d |
⊢ ( 𝑗 = ( 𝑚 + 1 ) → ( ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑗 ∨ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑗 ) ↔ ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = ( 𝑚 + 1 ) ∨ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = ( 𝑚 + 1 ) ) ) ) |
| 25 |
|
eqeq2 |
⊢ ( 𝑗 = 𝑁 → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑗 ↔ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 26 |
25
|
rexbidv |
⊢ ( 𝑗 = 𝑁 → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑗 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 27 |
|
eqeq2 |
⊢ ( 𝑗 = 𝑁 → ( ( 𝑘 · 2 ) = 𝑗 ↔ ( 𝑘 · 2 ) = 𝑁 ) ) |
| 28 |
27
|
rexbidv |
⊢ ( 𝑗 = 𝑁 → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑗 ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ) |
| 29 |
26 28
|
orbi12d |
⊢ ( 𝑗 = 𝑁 → ( ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑗 ∨ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑗 ) ↔ ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ∨ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ) ) |
| 30 |
|
0z |
⊢ 0 ∈ ℤ |
| 31 |
|
2cn |
⊢ 2 ∈ ℂ |
| 32 |
31
|
mul02i |
⊢ ( 0 · 2 ) = 0 |
| 33 |
|
oveq1 |
⊢ ( 𝑘 = 0 → ( 𝑘 · 2 ) = ( 0 · 2 ) ) |
| 34 |
33
|
eqeq1d |
⊢ ( 𝑘 = 0 → ( ( 𝑘 · 2 ) = 0 ↔ ( 0 · 2 ) = 0 ) ) |
| 35 |
34
|
rspcev |
⊢ ( ( 0 ∈ ℤ ∧ ( 0 · 2 ) = 0 ) → ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 0 ) |
| 36 |
30 32 35
|
mp2an |
⊢ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 0 |
| 37 |
36
|
olci |
⊢ ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 0 ∨ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 0 ) |
| 38 |
|
orcom |
⊢ ( ( ∃ 𝑥 ∈ ℤ ( ( 2 · 𝑥 ) + 1 ) = 𝑚 ∨ ∃ 𝑦 ∈ ℤ ( 𝑦 · 2 ) = 𝑚 ) ↔ ( ∃ 𝑦 ∈ ℤ ( 𝑦 · 2 ) = 𝑚 ∨ ∃ 𝑥 ∈ ℤ ( ( 2 · 𝑥 ) + 1 ) = 𝑚 ) ) |
| 39 |
|
zcn |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) |
| 40 |
|
mulcom |
⊢ ( ( 𝑦 ∈ ℂ ∧ 2 ∈ ℂ ) → ( 𝑦 · 2 ) = ( 2 · 𝑦 ) ) |
| 41 |
39 31 40
|
sylancl |
⊢ ( 𝑦 ∈ ℤ → ( 𝑦 · 2 ) = ( 2 · 𝑦 ) ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑦 ∈ ℤ ) → ( 𝑦 · 2 ) = ( 2 · 𝑦 ) ) |
| 43 |
42
|
eqeq1d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑦 ∈ ℤ ) → ( ( 𝑦 · 2 ) = 𝑚 ↔ ( 2 · 𝑦 ) = 𝑚 ) ) |
| 44 |
|
eqid |
⊢ ( ( 2 · 𝑦 ) + 1 ) = ( ( 2 · 𝑦 ) + 1 ) |
| 45 |
|
oveq2 |
⊢ ( 𝑛 = 𝑦 → ( 2 · 𝑛 ) = ( 2 · 𝑦 ) ) |
| 46 |
45
|
oveq1d |
⊢ ( 𝑛 = 𝑦 → ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · 𝑦 ) + 1 ) ) |
| 47 |
46
|
eqeq1d |
⊢ ( 𝑛 = 𝑦 → ( ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · 𝑦 ) + 1 ) ↔ ( ( 2 · 𝑦 ) + 1 ) = ( ( 2 · 𝑦 ) + 1 ) ) ) |
| 48 |
47
|
rspcev |
⊢ ( ( 𝑦 ∈ ℤ ∧ ( ( 2 · 𝑦 ) + 1 ) = ( ( 2 · 𝑦 ) + 1 ) ) → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · 𝑦 ) + 1 ) ) |
| 49 |
44 48
|
mpan2 |
⊢ ( 𝑦 ∈ ℤ → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · 𝑦 ) + 1 ) ) |
| 50 |
|
oveq1 |
⊢ ( ( 2 · 𝑦 ) = 𝑚 → ( ( 2 · 𝑦 ) + 1 ) = ( 𝑚 + 1 ) ) |
| 51 |
50
|
eqeq2d |
⊢ ( ( 2 · 𝑦 ) = 𝑚 → ( ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · 𝑦 ) + 1 ) ↔ ( ( 2 · 𝑛 ) + 1 ) = ( 𝑚 + 1 ) ) ) |
| 52 |
51
|
rexbidv |
⊢ ( ( 2 · 𝑦 ) = 𝑚 → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · 𝑦 ) + 1 ) ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = ( 𝑚 + 1 ) ) ) |
| 53 |
49 52
|
syl5ibcom |
⊢ ( 𝑦 ∈ ℤ → ( ( 2 · 𝑦 ) = 𝑚 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = ( 𝑚 + 1 ) ) ) |
| 54 |
53
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑦 ∈ ℤ ) → ( ( 2 · 𝑦 ) = 𝑚 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = ( 𝑚 + 1 ) ) ) |
| 55 |
43 54
|
sylbid |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑦 ∈ ℤ ) → ( ( 𝑦 · 2 ) = 𝑚 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = ( 𝑚 + 1 ) ) ) |
| 56 |
55
|
rexlimdva |
⊢ ( 𝑚 ∈ ℕ0 → ( ∃ 𝑦 ∈ ℤ ( 𝑦 · 2 ) = 𝑚 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = ( 𝑚 + 1 ) ) ) |
| 57 |
|
peano2z |
⊢ ( 𝑥 ∈ ℤ → ( 𝑥 + 1 ) ∈ ℤ ) |
| 58 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
| 59 |
|
mulcom |
⊢ ( ( 𝑥 ∈ ℂ ∧ 2 ∈ ℂ ) → ( 𝑥 · 2 ) = ( 2 · 𝑥 ) ) |
| 60 |
31 59
|
mpan2 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · 2 ) = ( 2 · 𝑥 ) ) |
| 61 |
31
|
mullidi |
⊢ ( 1 · 2 ) = 2 |
| 62 |
61
|
a1i |
⊢ ( 𝑥 ∈ ℂ → ( 1 · 2 ) = 2 ) |
| 63 |
60 62
|
oveq12d |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑥 · 2 ) + ( 1 · 2 ) ) = ( ( 2 · 𝑥 ) + 2 ) ) |
| 64 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 65 |
64
|
oveq2i |
⊢ ( ( 2 · 𝑥 ) + 2 ) = ( ( 2 · 𝑥 ) + ( 1 + 1 ) ) |
| 66 |
63 65
|
eqtrdi |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑥 · 2 ) + ( 1 · 2 ) ) = ( ( 2 · 𝑥 ) + ( 1 + 1 ) ) ) |
| 67 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 68 |
|
adddir |
⊢ ( ( 𝑥 ∈ ℂ ∧ 1 ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 𝑥 + 1 ) · 2 ) = ( ( 𝑥 · 2 ) + ( 1 · 2 ) ) ) |
| 69 |
67 31 68
|
mp3an23 |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑥 + 1 ) · 2 ) = ( ( 𝑥 · 2 ) + ( 1 · 2 ) ) ) |
| 70 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 2 · 𝑥 ) ∈ ℂ ) |
| 71 |
31 70
|
mpan |
⊢ ( 𝑥 ∈ ℂ → ( 2 · 𝑥 ) ∈ ℂ ) |
| 72 |
|
addass |
⊢ ( ( ( 2 · 𝑥 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 · 𝑥 ) + 1 ) + 1 ) = ( ( 2 · 𝑥 ) + ( 1 + 1 ) ) ) |
| 73 |
67 67 72
|
mp3an23 |
⊢ ( ( 2 · 𝑥 ) ∈ ℂ → ( ( ( 2 · 𝑥 ) + 1 ) + 1 ) = ( ( 2 · 𝑥 ) + ( 1 + 1 ) ) ) |
| 74 |
71 73
|
syl |
⊢ ( 𝑥 ∈ ℂ → ( ( ( 2 · 𝑥 ) + 1 ) + 1 ) = ( ( 2 · 𝑥 ) + ( 1 + 1 ) ) ) |
| 75 |
66 69 74
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑥 + 1 ) · 2 ) = ( ( ( 2 · 𝑥 ) + 1 ) + 1 ) ) |
| 76 |
58 75
|
syl |
⊢ ( 𝑥 ∈ ℤ → ( ( 𝑥 + 1 ) · 2 ) = ( ( ( 2 · 𝑥 ) + 1 ) + 1 ) ) |
| 77 |
76
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 + 1 ) · 2 ) = ( ( ( 2 · 𝑥 ) + 1 ) + 1 ) ) |
| 78 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝑥 + 1 ) → ( 𝑘 · 2 ) = ( ( 𝑥 + 1 ) · 2 ) ) |
| 79 |
78
|
eqeq1d |
⊢ ( 𝑘 = ( 𝑥 + 1 ) → ( ( 𝑘 · 2 ) = ( ( ( 2 · 𝑥 ) + 1 ) + 1 ) ↔ ( ( 𝑥 + 1 ) · 2 ) = ( ( ( 2 · 𝑥 ) + 1 ) + 1 ) ) ) |
| 80 |
79
|
rspcev |
⊢ ( ( ( 𝑥 + 1 ) ∈ ℤ ∧ ( ( 𝑥 + 1 ) · 2 ) = ( ( ( 2 · 𝑥 ) + 1 ) + 1 ) ) → ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = ( ( ( 2 · 𝑥 ) + 1 ) + 1 ) ) |
| 81 |
57 77 80
|
syl2an2 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = ( ( ( 2 · 𝑥 ) + 1 ) + 1 ) ) |
| 82 |
|
oveq1 |
⊢ ( ( ( 2 · 𝑥 ) + 1 ) = 𝑚 → ( ( ( 2 · 𝑥 ) + 1 ) + 1 ) = ( 𝑚 + 1 ) ) |
| 83 |
82
|
eqeq2d |
⊢ ( ( ( 2 · 𝑥 ) + 1 ) = 𝑚 → ( ( 𝑘 · 2 ) = ( ( ( 2 · 𝑥 ) + 1 ) + 1 ) ↔ ( 𝑘 · 2 ) = ( 𝑚 + 1 ) ) ) |
| 84 |
83
|
rexbidv |
⊢ ( ( ( 2 · 𝑥 ) + 1 ) = 𝑚 → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = ( ( ( 2 · 𝑥 ) + 1 ) + 1 ) ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = ( 𝑚 + 1 ) ) ) |
| 85 |
81 84
|
syl5ibcom |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( ( ( 2 · 𝑥 ) + 1 ) = 𝑚 → ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = ( 𝑚 + 1 ) ) ) |
| 86 |
85
|
rexlimdva |
⊢ ( 𝑚 ∈ ℕ0 → ( ∃ 𝑥 ∈ ℤ ( ( 2 · 𝑥 ) + 1 ) = 𝑚 → ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = ( 𝑚 + 1 ) ) ) |
| 87 |
56 86
|
orim12d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ∃ 𝑦 ∈ ℤ ( 𝑦 · 2 ) = 𝑚 ∨ ∃ 𝑥 ∈ ℤ ( ( 2 · 𝑥 ) + 1 ) = 𝑚 ) → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = ( 𝑚 + 1 ) ∨ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = ( 𝑚 + 1 ) ) ) ) |
| 88 |
38 87
|
biimtrid |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ∃ 𝑥 ∈ ℤ ( ( 2 · 𝑥 ) + 1 ) = 𝑚 ∨ ∃ 𝑦 ∈ ℤ ( 𝑦 · 2 ) = 𝑚 ) → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = ( 𝑚 + 1 ) ∨ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = ( 𝑚 + 1 ) ) ) ) |
| 89 |
5 19 24 29 37 88
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ∨ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = 𝑁 ) ) |