Step |
Hyp |
Ref |
Expression |
1 |
|
oddcomabszz.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
2 |
|
oddcomabszz.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ∧ 0 ≤ 𝑥 ) → 0 ≤ 𝐴 ) |
3 |
|
oddcomabszz.3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℤ ) → 𝐶 = - 𝐵 ) |
4 |
|
oddcomabszz.4 |
⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) |
5 |
|
oddcomabszz.5 |
⊢ ( 𝑥 = - 𝑦 → 𝐴 = 𝐶 ) |
6 |
|
oddcomabszz.6 |
⊢ ( 𝑥 = 𝐷 → 𝐴 = 𝐸 ) |
7 |
|
oddcomabszz.7 |
⊢ ( 𝑥 = ( abs ‘ 𝐷 ) → 𝐴 = 𝐹 ) |
8 |
|
eleq1 |
⊢ ( 𝑎 = 𝐷 → ( 𝑎 ∈ ℤ ↔ 𝐷 ∈ ℤ ) ) |
9 |
8
|
anbi2d |
⊢ ( 𝑎 = 𝐷 → ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) ↔ ( 𝜑 ∧ 𝐷 ∈ ℤ ) ) ) |
10 |
|
csbeq1 |
⊢ ( 𝑎 = 𝐷 → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 = ⦋ 𝐷 / 𝑥 ⦌ 𝐴 ) |
11 |
10
|
fveq2d |
⊢ ( 𝑎 = 𝐷 → ( abs ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) = ( abs ‘ ⦋ 𝐷 / 𝑥 ⦌ 𝐴 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑎 = 𝐷 → ( abs ‘ 𝑎 ) = ( abs ‘ 𝐷 ) ) |
13 |
12
|
csbeq1d |
⊢ ( 𝑎 = 𝐷 → ⦋ ( abs ‘ 𝑎 ) / 𝑥 ⦌ 𝐴 = ⦋ ( abs ‘ 𝐷 ) / 𝑥 ⦌ 𝐴 ) |
14 |
11 13
|
eqeq12d |
⊢ ( 𝑎 = 𝐷 → ( ( abs ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) = ⦋ ( abs ‘ 𝑎 ) / 𝑥 ⦌ 𝐴 ↔ ( abs ‘ ⦋ 𝐷 / 𝑥 ⦌ 𝐴 ) = ⦋ ( abs ‘ 𝐷 ) / 𝑥 ⦌ 𝐴 ) ) |
15 |
9 14
|
imbi12d |
⊢ ( 𝑎 = 𝐷 → ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( abs ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) = ⦋ ( abs ‘ 𝑎 ) / 𝑥 ⦌ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝐷 ∈ ℤ ) → ( abs ‘ ⦋ 𝐷 / 𝑥 ⦌ 𝐴 ) = ⦋ ( abs ‘ 𝐷 ) / 𝑥 ⦌ 𝐴 ) ) ) |
16 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑎 ∈ ℤ ) |
17 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 |
18 |
17
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℝ |
19 |
16 18
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
20 |
|
eleq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ∈ ℤ ↔ 𝑎 ∈ ℤ ) ) |
21 |
20
|
anbi2d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) ↔ ( 𝜑 ∧ 𝑎 ∈ ℤ ) ) ) |
22 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑎 → 𝐴 = ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
23 |
22
|
eleq1d |
⊢ ( 𝑥 = 𝑎 → ( 𝐴 ∈ ℝ ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
24 |
21 23
|
imbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → 𝐴 ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) ) |
25 |
19 24 1
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
26 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) ∧ 0 ≤ 𝑎 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
27 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 0 ≤ 𝑎 ) |
28 |
|
nfcv |
⊢ Ⅎ 𝑥 0 |
29 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
30 |
28 29 17
|
nfbr |
⊢ Ⅎ 𝑥 0 ≤ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 |
31 |
27 30
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 0 ≤ 𝑎 ) → 0 ≤ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
32 |
|
breq2 |
⊢ ( 𝑥 = 𝑎 → ( 0 ≤ 𝑥 ↔ 0 ≤ 𝑎 ) ) |
33 |
20 32
|
3anbi23d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝜑 ∧ 𝑥 ∈ ℤ ∧ 0 ≤ 𝑥 ) ↔ ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 0 ≤ 𝑎 ) ) ) |
34 |
22
|
breq2d |
⊢ ( 𝑥 = 𝑎 → ( 0 ≤ 𝐴 ↔ 0 ≤ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
35 |
33 34
|
imbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℤ ∧ 0 ≤ 𝑥 ) → 0 ≤ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 0 ≤ 𝑎 ) → 0 ≤ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) ) |
36 |
31 35 2
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 0 ≤ 𝑎 ) → 0 ≤ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
37 |
36
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) ∧ 0 ≤ 𝑎 ) → 0 ≤ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
38 |
26 37
|
absidd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) ∧ 0 ≤ 𝑎 ) → ( abs ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) = ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
39 |
|
zre |
⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℝ ) |
40 |
39
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) ∧ 0 ≤ 𝑎 ) → 𝑎 ∈ ℝ ) |
41 |
|
absid |
⊢ ( ( 𝑎 ∈ ℝ ∧ 0 ≤ 𝑎 ) → ( abs ‘ 𝑎 ) = 𝑎 ) |
42 |
40 41
|
sylancom |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) ∧ 0 ≤ 𝑎 ) → ( abs ‘ 𝑎 ) = 𝑎 ) |
43 |
42
|
csbeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) ∧ 0 ≤ 𝑎 ) → ⦋ ( abs ‘ 𝑎 ) / 𝑥 ⦌ 𝐴 = ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
44 |
38 43
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) ∧ 0 ≤ 𝑎 ) → ( abs ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) = ⦋ ( abs ‘ 𝑎 ) / 𝑥 ⦌ 𝐴 ) |
45 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ⦋ - 𝑎 / 𝑥 ⦌ 𝐴 = - ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
46 |
|
eleq1 |
⊢ ( 𝑦 = 𝑎 → ( 𝑦 ∈ ℤ ↔ 𝑎 ∈ ℤ ) ) |
47 |
46
|
anbi2d |
⊢ ( 𝑦 = 𝑎 → ( ( 𝜑 ∧ 𝑦 ∈ ℤ ) ↔ ( 𝜑 ∧ 𝑎 ∈ ℤ ) ) ) |
48 |
|
negex |
⊢ - 𝑦 ∈ V |
49 |
48 5
|
csbie |
⊢ ⦋ - 𝑦 / 𝑥 ⦌ 𝐴 = 𝐶 |
50 |
|
negeq |
⊢ ( 𝑦 = 𝑎 → - 𝑦 = - 𝑎 ) |
51 |
50
|
csbeq1d |
⊢ ( 𝑦 = 𝑎 → ⦋ - 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ - 𝑎 / 𝑥 ⦌ 𝐴 ) |
52 |
49 51
|
eqtr3id |
⊢ ( 𝑦 = 𝑎 → 𝐶 = ⦋ - 𝑎 / 𝑥 ⦌ 𝐴 ) |
53 |
|
vex |
⊢ 𝑦 ∈ V |
54 |
53 4
|
csbie |
⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐵 |
55 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑎 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
56 |
54 55
|
eqtr3id |
⊢ ( 𝑦 = 𝑎 → 𝐵 = ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
57 |
56
|
negeqd |
⊢ ( 𝑦 = 𝑎 → - 𝐵 = - ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
58 |
52 57
|
eqeq12d |
⊢ ( 𝑦 = 𝑎 → ( 𝐶 = - 𝐵 ↔ ⦋ - 𝑎 / 𝑥 ⦌ 𝐴 = - ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
59 |
47 58
|
imbi12d |
⊢ ( 𝑦 = 𝑎 → ( ( ( 𝜑 ∧ 𝑦 ∈ ℤ ) → 𝐶 = - 𝐵 ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ⦋ - 𝑎 / 𝑥 ⦌ 𝐴 = - ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) ) |
60 |
45 59 3
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ⦋ - 𝑎 / 𝑥 ⦌ 𝐴 = - ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
61 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≤ 0 ) → ⦋ - 𝑎 / 𝑥 ⦌ 𝐴 = - ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
62 |
39
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≤ 0 ) → 𝑎 ∈ ℝ ) |
63 |
|
absnid |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑎 ≤ 0 ) → ( abs ‘ 𝑎 ) = - 𝑎 ) |
64 |
62 63
|
sylancom |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≤ 0 ) → ( abs ‘ 𝑎 ) = - 𝑎 ) |
65 |
64
|
csbeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≤ 0 ) → ⦋ ( abs ‘ 𝑎 ) / 𝑥 ⦌ 𝐴 = ⦋ - 𝑎 / 𝑥 ⦌ 𝐴 ) |
66 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≤ 0 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
67 |
|
znegcl |
⊢ ( 𝑎 ∈ ℤ → - 𝑎 ∈ ℤ ) |
68 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ - 𝑎 ∈ ℤ ∧ 0 ≤ - 𝑎 ) |
69 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ - 𝑎 / 𝑥 ⦌ 𝐴 |
70 |
28 29 69
|
nfbr |
⊢ Ⅎ 𝑥 0 ≤ ⦋ - 𝑎 / 𝑥 ⦌ 𝐴 |
71 |
68 70
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ - 𝑎 ∈ ℤ ∧ 0 ≤ - 𝑎 ) → 0 ≤ ⦋ - 𝑎 / 𝑥 ⦌ 𝐴 ) |
72 |
|
negex |
⊢ - 𝑎 ∈ V |
73 |
|
eleq1 |
⊢ ( 𝑥 = - 𝑎 → ( 𝑥 ∈ ℤ ↔ - 𝑎 ∈ ℤ ) ) |
74 |
|
breq2 |
⊢ ( 𝑥 = - 𝑎 → ( 0 ≤ 𝑥 ↔ 0 ≤ - 𝑎 ) ) |
75 |
73 74
|
3anbi23d |
⊢ ( 𝑥 = - 𝑎 → ( ( 𝜑 ∧ 𝑥 ∈ ℤ ∧ 0 ≤ 𝑥 ) ↔ ( 𝜑 ∧ - 𝑎 ∈ ℤ ∧ 0 ≤ - 𝑎 ) ) ) |
76 |
|
csbeq1a |
⊢ ( 𝑥 = - 𝑎 → 𝐴 = ⦋ - 𝑎 / 𝑥 ⦌ 𝐴 ) |
77 |
76
|
breq2d |
⊢ ( 𝑥 = - 𝑎 → ( 0 ≤ 𝐴 ↔ 0 ≤ ⦋ - 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
78 |
75 77
|
imbi12d |
⊢ ( 𝑥 = - 𝑎 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℤ ∧ 0 ≤ 𝑥 ) → 0 ≤ 𝐴 ) ↔ ( ( 𝜑 ∧ - 𝑎 ∈ ℤ ∧ 0 ≤ - 𝑎 ) → 0 ≤ ⦋ - 𝑎 / 𝑥 ⦌ 𝐴 ) ) ) |
79 |
71 72 78 2
|
vtoclf |
⊢ ( ( 𝜑 ∧ - 𝑎 ∈ ℤ ∧ 0 ≤ - 𝑎 ) → 0 ≤ ⦋ - 𝑎 / 𝑥 ⦌ 𝐴 ) |
80 |
79
|
3expia |
⊢ ( ( 𝜑 ∧ - 𝑎 ∈ ℤ ) → ( 0 ≤ - 𝑎 → 0 ≤ ⦋ - 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
81 |
67 80
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 0 ≤ - 𝑎 → 0 ≤ ⦋ - 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
82 |
60
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 0 ≤ ⦋ - 𝑎 / 𝑥 ⦌ 𝐴 ↔ 0 ≤ - ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
83 |
81 82
|
sylibd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 0 ≤ - 𝑎 → 0 ≤ - ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
84 |
39
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → 𝑎 ∈ ℝ ) |
85 |
84
|
le0neg1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 𝑎 ≤ 0 ↔ 0 ≤ - 𝑎 ) ) |
86 |
25
|
le0neg1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ≤ 0 ↔ 0 ≤ - ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) ) |
87 |
83 85 86
|
3imtr4d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 𝑎 ≤ 0 → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ≤ 0 ) ) |
88 |
87
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≤ 0 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ≤ 0 ) |
89 |
66 88
|
absnidd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≤ 0 ) → ( abs ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) = - ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) |
90 |
61 65 89
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) ∧ 𝑎 ≤ 0 ) → ( abs ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) = ⦋ ( abs ‘ 𝑎 ) / 𝑥 ⦌ 𝐴 ) |
91 |
|
0re |
⊢ 0 ∈ ℝ |
92 |
|
letric |
⊢ ( ( 0 ∈ ℝ ∧ 𝑎 ∈ ℝ ) → ( 0 ≤ 𝑎 ∨ 𝑎 ≤ 0 ) ) |
93 |
91 39 92
|
sylancr |
⊢ ( 𝑎 ∈ ℤ → ( 0 ≤ 𝑎 ∨ 𝑎 ≤ 0 ) ) |
94 |
93
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 0 ≤ 𝑎 ∨ 𝑎 ≤ 0 ) ) |
95 |
44 90 94
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( abs ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝐴 ) = ⦋ ( abs ‘ 𝑎 ) / 𝑥 ⦌ 𝐴 ) |
96 |
15 95
|
vtoclg |
⊢ ( 𝐷 ∈ ℤ → ( ( 𝜑 ∧ 𝐷 ∈ ℤ ) → ( abs ‘ ⦋ 𝐷 / 𝑥 ⦌ 𝐴 ) = ⦋ ( abs ‘ 𝐷 ) / 𝑥 ⦌ 𝐴 ) ) |
97 |
96
|
anabsi7 |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ℤ ) → ( abs ‘ ⦋ 𝐷 / 𝑥 ⦌ 𝐴 ) = ⦋ ( abs ‘ 𝐷 ) / 𝑥 ⦌ 𝐴 ) |
98 |
|
nfcvd |
⊢ ( 𝐷 ∈ ℤ → Ⅎ 𝑥 𝐸 ) |
99 |
98 6
|
csbiegf |
⊢ ( 𝐷 ∈ ℤ → ⦋ 𝐷 / 𝑥 ⦌ 𝐴 = 𝐸 ) |
100 |
99
|
fveq2d |
⊢ ( 𝐷 ∈ ℤ → ( abs ‘ ⦋ 𝐷 / 𝑥 ⦌ 𝐴 ) = ( abs ‘ 𝐸 ) ) |
101 |
100
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ℤ ) → ( abs ‘ ⦋ 𝐷 / 𝑥 ⦌ 𝐴 ) = ( abs ‘ 𝐸 ) ) |
102 |
|
fvex |
⊢ ( abs ‘ 𝐷 ) ∈ V |
103 |
102 7
|
csbie |
⊢ ⦋ ( abs ‘ 𝐷 ) / 𝑥 ⦌ 𝐴 = 𝐹 |
104 |
103
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ℤ ) → ⦋ ( abs ‘ 𝐷 ) / 𝑥 ⦌ 𝐴 = 𝐹 ) |
105 |
97 101 104
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ℤ ) → ( abs ‘ 𝐸 ) = 𝐹 ) |