Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( 2 · 𝑛 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ↔ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) |
2 |
|
nn0z |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) |
3 |
2
|
adantl |
⊢ ( ( ( ( 2 · 𝑛 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℤ ) |
4 |
|
eluz2 |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) ∈ ℤ ∧ 2 ≤ ( ( 2 · 𝑛 ) + 1 ) ) ) |
5 |
|
2re |
⊢ 2 ∈ ℝ |
6 |
5
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → 2 ∈ ℝ ) |
7 |
|
1red |
⊢ ( 𝑛 ∈ ℕ0 → 1 ∈ ℝ ) |
8 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
9 |
8
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → 2 ∈ ℕ0 ) |
10 |
|
id |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℕ0 ) |
11 |
9 10
|
nn0mulcld |
⊢ ( 𝑛 ∈ ℕ0 → ( 2 · 𝑛 ) ∈ ℕ0 ) |
12 |
11
|
nn0red |
⊢ ( 𝑛 ∈ ℕ0 → ( 2 · 𝑛 ) ∈ ℝ ) |
13 |
6 7 12
|
lesubaddd |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 2 − 1 ) ≤ ( 2 · 𝑛 ) ↔ 2 ≤ ( ( 2 · 𝑛 ) + 1 ) ) ) |
14 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
15 |
14
|
breq1i |
⊢ ( ( 2 − 1 ) ≤ ( 2 · 𝑛 ) ↔ 1 ≤ ( 2 · 𝑛 ) ) |
16 |
|
nn0re |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℝ ) |
17 |
|
2rp |
⊢ 2 ∈ ℝ+ |
18 |
17
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → 2 ∈ ℝ+ ) |
19 |
7 16 18
|
ledivmuld |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 1 / 2 ) ≤ 𝑛 ↔ 1 ≤ ( 2 · 𝑛 ) ) ) |
20 |
|
halfgt0 |
⊢ 0 < ( 1 / 2 ) |
21 |
|
0red |
⊢ ( 𝑛 ∈ ℕ0 → 0 ∈ ℝ ) |
22 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
23 |
22
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → ( 1 / 2 ) ∈ ℝ ) |
24 |
|
ltletr |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( ( 0 < ( 1 / 2 ) ∧ ( 1 / 2 ) ≤ 𝑛 ) → 0 < 𝑛 ) ) |
25 |
21 23 16 24
|
syl3anc |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 0 < ( 1 / 2 ) ∧ ( 1 / 2 ) ≤ 𝑛 ) → 0 < 𝑛 ) ) |
26 |
20 25
|
mpani |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 1 / 2 ) ≤ 𝑛 → 0 < 𝑛 ) ) |
27 |
19 26
|
sylbird |
⊢ ( 𝑛 ∈ ℕ0 → ( 1 ≤ ( 2 · 𝑛 ) → 0 < 𝑛 ) ) |
28 |
15 27
|
syl5bi |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 2 − 1 ) ≤ ( 2 · 𝑛 ) → 0 < 𝑛 ) ) |
29 |
13 28
|
sylbird |
⊢ ( 𝑛 ∈ ℕ0 → ( 2 ≤ ( ( 2 · 𝑛 ) + 1 ) → 0 < 𝑛 ) ) |
30 |
29
|
com12 |
⊢ ( 2 ≤ ( ( 2 · 𝑛 ) + 1 ) → ( 𝑛 ∈ ℕ0 → 0 < 𝑛 ) ) |
31 |
30
|
3ad2ant3 |
⊢ ( ( 2 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) ∈ ℤ ∧ 2 ≤ ( ( 2 · 𝑛 ) + 1 ) ) → ( 𝑛 ∈ ℕ0 → 0 < 𝑛 ) ) |
32 |
4 31
|
sylbi |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) → ( 𝑛 ∈ ℕ0 → 0 < 𝑛 ) ) |
33 |
32
|
imp |
⊢ ( ( ( ( 2 · 𝑛 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ0 ) → 0 < 𝑛 ) |
34 |
|
elnnz |
⊢ ( 𝑛 ∈ ℕ ↔ ( 𝑛 ∈ ℤ ∧ 0 < 𝑛 ) ) |
35 |
3 33 34
|
sylanbrc |
⊢ ( ( ( ( 2 · 𝑛 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ ) |
36 |
35
|
ex |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) → ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℕ ) ) |
37 |
1 36
|
syl6bir |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℕ ) ) ) |
38 |
37
|
com13 |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → 𝑛 ∈ ℕ ) ) ) |
39 |
38
|
impcom |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → 𝑛 ∈ ℕ ) ) |
40 |
39
|
pm4.71rd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ ( 𝑛 ∈ ℕ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) ) |
41 |
40
|
bicomd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ↔ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
42 |
41
|
rexbidva |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ∃ 𝑛 ∈ ℕ0 ( 𝑛 ∈ ℕ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
43 |
|
nnssnn0 |
⊢ ℕ ⊆ ℕ0 |
44 |
|
rexss |
⊢ ( ℕ ⊆ ℕ0 → ( ∃ 𝑛 ∈ ℕ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℕ0 ( 𝑛 ∈ ℕ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) ) |
45 |
43 44
|
mp1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ∃ 𝑛 ∈ ℕ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℕ0 ( 𝑛 ∈ ℕ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) ) |
46 |
|
eluzge2nn0 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ0 ) |
47 |
|
oddnn02np1 |
⊢ ( 𝑁 ∈ ℕ0 → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℕ0 ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
48 |
46 47
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℕ0 ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
49 |
42 45 48
|
3bitr4rd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℕ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |