Metamath Proof Explorer


Theorem oddm1eveni

Description: The predecessor of an odd number is even. (Contributed by AV, 6-Jul-2020)

Ref Expression
Assertion oddm1eveni ( 𝑍 ∈ Odd → ( 𝑍 − 1 ) ∈ Even )

Proof

Step Hyp Ref Expression
1 oddz ( 𝑍 ∈ Odd → 𝑍 ∈ ℤ )
2 peano2zm ( 𝑍 ∈ ℤ → ( 𝑍 − 1 ) ∈ ℤ )
3 1 2 syl ( 𝑍 ∈ Odd → ( 𝑍 − 1 ) ∈ ℤ )
4 oddm1div2z ( 𝑍 ∈ Odd → ( ( 𝑍 − 1 ) / 2 ) ∈ ℤ )
5 iseven ( ( 𝑍 − 1 ) ∈ Even ↔ ( ( 𝑍 − 1 ) ∈ ℤ ∧ ( ( 𝑍 − 1 ) / 2 ) ∈ ℤ ) )
6 3 4 5 sylanbrc ( 𝑍 ∈ Odd → ( 𝑍 − 1 ) ∈ Even )