Metamath Proof Explorer


Theorem oddn2prm

Description: A prime not equal to 2 is odd. (Contributed by AV, 28-Jun-2021)

Ref Expression
Assertion oddn2prm ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ 𝑁 )

Proof

Step Hyp Ref Expression
1 nnoddn2prm ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) )
2 1 simprd ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ 𝑁 )