Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0 ) ) |
2 |
|
elnn0z |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ0 ↔ ( ( ( 2 · 𝑛 ) + 1 ) ∈ ℤ ∧ 0 ≤ ( ( 2 · 𝑛 ) + 1 ) ) ) |
3 |
|
2tnp1ge0ge0 |
⊢ ( 𝑛 ∈ ℤ → ( 0 ≤ ( ( 2 · 𝑛 ) + 1 ) ↔ 0 ≤ 𝑛 ) ) |
4 |
3
|
biimpd |
⊢ ( 𝑛 ∈ ℤ → ( 0 ≤ ( ( 2 · 𝑛 ) + 1 ) → 0 ≤ 𝑛 ) ) |
5 |
4
|
imdistani |
⊢ ( ( 𝑛 ∈ ℤ ∧ 0 ≤ ( ( 2 · 𝑛 ) + 1 ) ) → ( 𝑛 ∈ ℤ ∧ 0 ≤ 𝑛 ) ) |
6 |
5
|
expcom |
⊢ ( 0 ≤ ( ( 2 · 𝑛 ) + 1 ) → ( 𝑛 ∈ ℤ → ( 𝑛 ∈ ℤ ∧ 0 ≤ 𝑛 ) ) ) |
7 |
|
elnn0z |
⊢ ( 𝑛 ∈ ℕ0 ↔ ( 𝑛 ∈ ℤ ∧ 0 ≤ 𝑛 ) ) |
8 |
6 7
|
syl6ibr |
⊢ ( 0 ≤ ( ( 2 · 𝑛 ) + 1 ) → ( 𝑛 ∈ ℤ → 𝑛 ∈ ℕ0 ) ) |
9 |
2 8
|
simplbiim |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ0 → ( 𝑛 ∈ ℤ → 𝑛 ∈ ℕ0 ) ) |
10 |
1 9
|
syl6bir |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑁 ∈ ℕ0 → ( 𝑛 ∈ ℤ → 𝑛 ∈ ℕ0 ) ) ) |
11 |
10
|
com13 |
⊢ ( 𝑛 ∈ ℤ → ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → 𝑛 ∈ ℕ0 ) ) ) |
12 |
11
|
impcom |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → 𝑛 ∈ ℕ0 ) ) |
13 |
12
|
pm4.71rd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ ( 𝑛 ∈ ℕ0 ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) ) |
14 |
13
|
bicomd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → ( ( 𝑛 ∈ ℕ0 ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ↔ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
15 |
14
|
rexbidva |
⊢ ( 𝑁 ∈ ℕ0 → ( ∃ 𝑛 ∈ ℤ ( 𝑛 ∈ ℕ0 ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
16 |
|
nn0ssz |
⊢ ℕ0 ⊆ ℤ |
17 |
|
rexss |
⊢ ( ℕ0 ⊆ ℤ → ( ∃ 𝑛 ∈ ℕ0 ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 ∈ ℕ0 ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) ) |
18 |
16 17
|
mp1i |
⊢ ( 𝑁 ∈ ℕ0 → ( ∃ 𝑛 ∈ ℕ0 ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 ∈ ℕ0 ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) ) |
19 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
20 |
|
odd2np1 |
⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
21 |
19 20
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
22 |
15 18 21
|
3bitr4rd |
⊢ ( 𝑁 ∈ ℕ0 → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℕ0 ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |