Metamath Proof Explorer


Theorem oddp1eveni

Description: The successor of an odd number is even. (Contributed by AV, 16-Jun-2020)

Ref Expression
Assertion oddp1eveni ( 𝑍 ∈ Odd → ( 𝑍 + 1 ) ∈ Even )

Proof

Step Hyp Ref Expression
1 oddz ( 𝑍 ∈ Odd → 𝑍 ∈ ℤ )
2 1 peano2zd ( 𝑍 ∈ Odd → ( 𝑍 + 1 ) ∈ ℤ )
3 oddp1div2z ( 𝑍 ∈ Odd → ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ )
4 iseven ( ( 𝑍 + 1 ) ∈ Even ↔ ( ( 𝑍 + 1 ) ∈ ℤ ∧ ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ ) )
5 2 3 4 sylanbrc ( 𝑍 ∈ Odd → ( 𝑍 + 1 ) ∈ Even )