Step |
Hyp |
Ref |
Expression |
1 |
|
hgt750leme.o |
⊢ 𝑂 = { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } |
2 |
|
ancom |
⊢ ( ( 𝑧 ∈ 𝑂 ∧ 𝑧 ∈ ℙ ) ↔ ( 𝑧 ∈ ℙ ∧ 𝑧 ∈ 𝑂 ) ) |
3 |
|
prmz |
⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ℤ ) |
4 |
1
|
rabeq2i |
⊢ ( 𝑧 ∈ 𝑂 ↔ ( 𝑧 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 ) ) |
5 |
4
|
baib |
⊢ ( 𝑧 ∈ ℤ → ( 𝑧 ∈ 𝑂 ↔ ¬ 2 ∥ 𝑧 ) ) |
6 |
3 5
|
syl |
⊢ ( 𝑧 ∈ ℙ → ( 𝑧 ∈ 𝑂 ↔ ¬ 2 ∥ 𝑧 ) ) |
7 |
6
|
pm5.32i |
⊢ ( ( 𝑧 ∈ ℙ ∧ 𝑧 ∈ 𝑂 ) ↔ ( 𝑧 ∈ ℙ ∧ ¬ 2 ∥ 𝑧 ) ) |
8 |
2 7
|
bitr2i |
⊢ ( ( 𝑧 ∈ ℙ ∧ ¬ 2 ∥ 𝑧 ) ↔ ( 𝑧 ∈ 𝑂 ∧ 𝑧 ∈ ℙ ) ) |
9 |
|
nnoddn2prmb |
⊢ ( 𝑧 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑧 ∈ ℙ ∧ ¬ 2 ∥ 𝑧 ) ) |
10 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝑂 ∩ ℙ ) ↔ ( 𝑧 ∈ 𝑂 ∧ 𝑧 ∈ ℙ ) ) |
11 |
8 9 10
|
3bitr4i |
⊢ ( 𝑧 ∈ ( ℙ ∖ { 2 } ) ↔ 𝑧 ∈ ( 𝑂 ∩ ℙ ) ) |
12 |
11
|
eqriv |
⊢ ( ℙ ∖ { 2 } ) = ( 𝑂 ∩ ℙ ) |