Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℙ ) |
2 |
|
oddprmgt2 |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 2 < 𝑃 ) |
3 |
|
3z |
⊢ 3 ∈ ℤ |
4 |
3
|
a1i |
⊢ ( ( 𝑃 ∈ ℙ ∧ 2 < 𝑃 ) → 3 ∈ ℤ ) |
5 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
6 |
5
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 2 < 𝑃 ) → 𝑃 ∈ ℤ ) |
7 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
8 |
|
2z |
⊢ 2 ∈ ℤ |
9 |
|
zltp1le |
⊢ ( ( 2 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 2 < 𝑃 ↔ ( 2 + 1 ) ≤ 𝑃 ) ) |
10 |
8 5 9
|
sylancr |
⊢ ( 𝑃 ∈ ℙ → ( 2 < 𝑃 ↔ ( 2 + 1 ) ≤ 𝑃 ) ) |
11 |
10
|
biimpa |
⊢ ( ( 𝑃 ∈ ℙ ∧ 2 < 𝑃 ) → ( 2 + 1 ) ≤ 𝑃 ) |
12 |
7 11
|
eqbrtrid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 2 < 𝑃 ) → 3 ≤ 𝑃 ) |
13 |
4 6 12
|
3jca |
⊢ ( ( 𝑃 ∈ ℙ ∧ 2 < 𝑃 ) → ( 3 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 3 ≤ 𝑃 ) ) |
14 |
1 2 13
|
syl2anc |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 3 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 3 ≤ 𝑃 ) ) |
15 |
|
eluz2 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 3 ) ↔ ( 3 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 3 ≤ 𝑃 ) ) |
16 |
14 15
|
sylibr |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ( ℤ≥ ‘ 3 ) ) |