Metamath Proof Explorer


Theorem oddprmge3

Description: An odd prime is greater than or equal to 3. (Contributed by Alexander van der Vekens, 7-Oct-2018) (Revised by AV, 20-Aug-2021)

Ref Expression
Assertion oddprmge3 ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ( ℤ ‘ 3 ) )

Proof

Step Hyp Ref Expression
1 eldifi ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℙ )
2 oddprmgt2 ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 2 < 𝑃 )
3 3z 3 ∈ ℤ
4 3 a1i ( ( 𝑃 ∈ ℙ ∧ 2 < 𝑃 ) → 3 ∈ ℤ )
5 prmz ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ )
6 5 adantr ( ( 𝑃 ∈ ℙ ∧ 2 < 𝑃 ) → 𝑃 ∈ ℤ )
7 df-3 3 = ( 2 + 1 )
8 2z 2 ∈ ℤ
9 zltp1le ( ( 2 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 2 < 𝑃 ↔ ( 2 + 1 ) ≤ 𝑃 ) )
10 8 5 9 sylancr ( 𝑃 ∈ ℙ → ( 2 < 𝑃 ↔ ( 2 + 1 ) ≤ 𝑃 ) )
11 10 biimpa ( ( 𝑃 ∈ ℙ ∧ 2 < 𝑃 ) → ( 2 + 1 ) ≤ 𝑃 )
12 7 11 eqbrtrid ( ( 𝑃 ∈ ℙ ∧ 2 < 𝑃 ) → 3 ≤ 𝑃 )
13 4 6 12 3jca ( ( 𝑃 ∈ ℙ ∧ 2 < 𝑃 ) → ( 3 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 3 ≤ 𝑃 ) )
14 1 2 13 syl2anc ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 3 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 3 ≤ 𝑃 ) )
15 eluz2 ( 𝑃 ∈ ( ℤ ‘ 3 ) ↔ ( 3 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 3 ≤ 𝑃 ) )
16 14 15 sylibr ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ( ℤ ‘ 3 ) )