Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ) |
2 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
3 |
|
eluz2 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 2 ≤ 𝑃 ) ) |
4 |
|
zre |
⊢ ( 2 ∈ ℤ → 2 ∈ ℝ ) |
5 |
|
zre |
⊢ ( 𝑃 ∈ ℤ → 𝑃 ∈ ℝ ) |
6 |
|
ltlen |
⊢ ( ( 2 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( 2 < 𝑃 ↔ ( 2 ≤ 𝑃 ∧ 𝑃 ≠ 2 ) ) ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 2 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 2 < 𝑃 ↔ ( 2 ≤ 𝑃 ∧ 𝑃 ≠ 2 ) ) ) |
8 |
7
|
biimprd |
⊢ ( ( 2 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 2 ≤ 𝑃 ∧ 𝑃 ≠ 2 ) → 2 < 𝑃 ) ) |
9 |
8
|
exp4b |
⊢ ( 2 ∈ ℤ → ( 𝑃 ∈ ℤ → ( 2 ≤ 𝑃 → ( 𝑃 ≠ 2 → 2 < 𝑃 ) ) ) ) |
10 |
9
|
3imp |
⊢ ( ( 2 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 2 ≤ 𝑃 ) → ( 𝑃 ≠ 2 → 2 < 𝑃 ) ) |
11 |
3 10
|
sylbi |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑃 ≠ 2 → 2 < 𝑃 ) ) |
12 |
2 11
|
syl |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ≠ 2 → 2 < 𝑃 ) ) |
13 |
12
|
imp |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) → 2 < 𝑃 ) |
14 |
1 13
|
sylbi |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 2 < 𝑃 ) |