Step |
Hyp |
Ref |
Expression |
1 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
2 |
|
zeo2ALTV |
⊢ ( 𝑃 ∈ ℤ → ( 𝑃 ∈ Even ↔ ¬ 𝑃 ∈ Odd ) ) |
3 |
1 2
|
syl |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∈ Even ↔ ¬ 𝑃 ∈ Odd ) ) |
4 |
|
evenprm2 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∈ Even ↔ 𝑃 = 2 ) ) |
5 |
3 4
|
bitr3d |
⊢ ( 𝑃 ∈ ℙ → ( ¬ 𝑃 ∈ Odd ↔ 𝑃 = 2 ) ) |
6 |
|
nne |
⊢ ( ¬ 𝑃 ≠ 2 ↔ 𝑃 = 2 ) |
7 |
5 6
|
bitr4di |
⊢ ( 𝑃 ∈ ℙ → ( ¬ 𝑃 ∈ Odd ↔ ¬ 𝑃 ≠ 2 ) ) |
8 |
7
|
con4bid |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∈ Odd ↔ 𝑃 ≠ 2 ) ) |
9 |
8
|
pm5.32i |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ∈ Odd ) ↔ ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ) |
10 |
|
eldifsn |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ) |
11 |
9 10
|
bitr4i |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ∈ Odd ) ↔ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |