Metamath Proof Explorer


Theorem oddpwdc

Description: Lemma for eulerpart . The function F that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017)

Ref Expression
Hypotheses oddpwdc.j 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 }
oddpwdc.f 𝐹 = ( 𝑥𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) )
Assertion oddpwdc 𝐹 : ( 𝐽 × ℕ0 ) –1-1-onto→ ℕ

Proof

Step Hyp Ref Expression
1 oddpwdc.j 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 }
2 oddpwdc.f 𝐹 = ( 𝑥𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) )
3 2nn 2 ∈ ℕ
4 3 a1i ( ( 𝑦 ∈ ℕ0𝑥𝐽 ) → 2 ∈ ℕ )
5 simpl ( ( 𝑦 ∈ ℕ0𝑥𝐽 ) → 𝑦 ∈ ℕ0 )
6 4 5 nnexpcld ( ( 𝑦 ∈ ℕ0𝑥𝐽 ) → ( 2 ↑ 𝑦 ) ∈ ℕ )
7 ssrab2 { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ⊆ ℕ
8 1 7 eqsstri 𝐽 ⊆ ℕ
9 simpr ( ( 𝑦 ∈ ℕ0𝑥𝐽 ) → 𝑥𝐽 )
10 8 9 sselid ( ( 𝑦 ∈ ℕ0𝑥𝐽 ) → 𝑥 ∈ ℕ )
11 6 10 nnmulcld ( ( 𝑦 ∈ ℕ0𝑥𝐽 ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) ∈ ℕ )
12 11 ancoms ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) ∈ ℕ )
13 12 adantl ( ( ⊤ ∧ ( 𝑥𝐽𝑦 ∈ ℕ0 ) ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) ∈ ℕ )
14 id ( 𝑎 ∈ ℕ → 𝑎 ∈ ℕ )
15 3 a1i ( 𝑎 ∈ ℕ → 2 ∈ ℕ )
16 nn0ssre 0 ⊆ ℝ
17 ltso < Or ℝ
18 soss ( ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0 ) )
19 16 17 18 mp2 < Or ℕ0
20 19 a1i ( 𝑎 ∈ ℕ → < Or ℕ0 )
21 0zd ( 𝑎 ∈ ℕ → 0 ∈ ℤ )
22 ssrab2 { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ⊆ ℕ0
23 22 a1i ( 𝑎 ∈ ℕ → { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ⊆ ℕ0 )
24 nnz ( 𝑎 ∈ ℕ → 𝑎 ∈ ℤ )
25 oveq2 ( 𝑘 = 𝑛 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 𝑛 ) )
26 25 breq1d ( 𝑘 = 𝑛 → ( ( 2 ↑ 𝑘 ) ∥ 𝑎 ↔ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) )
27 26 elrab ( 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ↔ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) )
28 simprl ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 𝑛 ∈ ℕ0 )
29 28 nn0red ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 𝑛 ∈ ℝ )
30 3 a1i ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 2 ∈ ℕ )
31 30 28 nnexpcld ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → ( 2 ↑ 𝑛 ) ∈ ℕ )
32 31 nnred ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → ( 2 ↑ 𝑛 ) ∈ ℝ )
33 simpl ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 𝑎 ∈ ℕ )
34 33 nnred ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 𝑎 ∈ ℝ )
35 2re 2 ∈ ℝ
36 35 leidi 2 ≤ 2
37 nexple ( ( 𝑛 ∈ ℕ0 ∧ 2 ∈ ℝ ∧ 2 ≤ 2 ) → 𝑛 ≤ ( 2 ↑ 𝑛 ) )
38 35 36 37 mp3an23 ( 𝑛 ∈ ℕ0𝑛 ≤ ( 2 ↑ 𝑛 ) )
39 38 ad2antrl ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 𝑛 ≤ ( 2 ↑ 𝑛 ) )
40 31 nnzd ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → ( 2 ↑ 𝑛 ) ∈ ℤ )
41 simprr ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → ( 2 ↑ 𝑛 ) ∥ 𝑎 )
42 dvdsle ( ( ( 2 ↑ 𝑛 ) ∈ ℤ ∧ 𝑎 ∈ ℕ ) → ( ( 2 ↑ 𝑛 ) ∥ 𝑎 → ( 2 ↑ 𝑛 ) ≤ 𝑎 ) )
43 42 imp ( ( ( ( 2 ↑ 𝑛 ) ∈ ℤ ∧ 𝑎 ∈ ℕ ) ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) → ( 2 ↑ 𝑛 ) ≤ 𝑎 )
44 40 33 41 43 syl21anc ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → ( 2 ↑ 𝑛 ) ≤ 𝑎 )
45 29 32 34 39 44 letrd ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 𝑛𝑎 )
46 27 45 sylan2b ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 𝑛𝑎 )
47 46 ralrimiva ( 𝑎 ∈ ℕ → ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛𝑎 )
48 brralrspcev ( ( 𝑎 ∈ ℤ ∧ ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛𝑎 ) → ∃ 𝑚 ∈ ℤ ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛𝑚 )
49 24 47 48 syl2anc ( 𝑎 ∈ ℕ → ∃ 𝑚 ∈ ℤ ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛𝑚 )
50 nn0uz 0 = ( ℤ ‘ 0 )
51 50 uzsupss ( ( 0 ∈ ℤ ∧ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ⊆ ℕ0 ∧ ∃ 𝑚 ∈ ℤ ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛𝑚 ) → ∃ 𝑚 ∈ ℕ0 ( ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ¬ 𝑚 < 𝑛 ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑛 < 𝑚 → ∃ 𝑜 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 < 𝑜 ) ) )
52 21 23 49 51 syl3anc ( 𝑎 ∈ ℕ → ∃ 𝑚 ∈ ℕ0 ( ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ¬ 𝑚 < 𝑛 ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑛 < 𝑚 → ∃ 𝑜 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 < 𝑜 ) ) )
53 20 52 supcl ( 𝑎 ∈ ℕ → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 )
54 15 53 nnexpcld ( 𝑎 ∈ ℕ → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℕ )
55 fzfi ( 0 ... 𝑎 ) ∈ Fin
56 0zd ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 0 ∈ ℤ )
57 24 adantr ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 𝑎 ∈ ℤ )
58 27 28 sylan2b ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 𝑛 ∈ ℕ0 )
59 58 nn0zd ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 𝑛 ∈ ℤ )
60 58 nn0ge0d ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 0 ≤ 𝑛 )
61 56 57 59 60 46 elfzd ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 𝑛 ∈ ( 0 ... 𝑎 ) )
62 61 ex ( 𝑎 ∈ ℕ → ( 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } → 𝑛 ∈ ( 0 ... 𝑎 ) ) )
63 62 ssrdv ( 𝑎 ∈ ℕ → { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ⊆ ( 0 ... 𝑎 ) )
64 ssfi ( ( ( 0 ... 𝑎 ) ∈ Fin ∧ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ⊆ ( 0 ... 𝑎 ) ) → { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ∈ Fin )
65 55 63 64 sylancr ( 𝑎 ∈ ℕ → { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ∈ Fin )
66 0nn0 0 ∈ ℕ0
67 66 a1i ( 𝑎 ∈ ℕ → 0 ∈ ℕ0 )
68 2cn 2 ∈ ℂ
69 exp0 ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 )
70 68 69 ax-mp ( 2 ↑ 0 ) = 1
71 1dvds ( 𝑎 ∈ ℤ → 1 ∥ 𝑎 )
72 24 71 syl ( 𝑎 ∈ ℕ → 1 ∥ 𝑎 )
73 70 72 eqbrtrid ( 𝑎 ∈ ℕ → ( 2 ↑ 0 ) ∥ 𝑎 )
74 oveq2 ( 𝑘 = 0 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 0 ) )
75 74 breq1d ( 𝑘 = 0 → ( ( 2 ↑ 𝑘 ) ∥ 𝑎 ↔ ( 2 ↑ 0 ) ∥ 𝑎 ) )
76 75 elrab ( 0 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ↔ ( 0 ∈ ℕ0 ∧ ( 2 ↑ 0 ) ∥ 𝑎 ) )
77 67 73 76 sylanbrc ( 𝑎 ∈ ℕ → 0 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } )
78 77 ne0d ( 𝑎 ∈ ℕ → { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ≠ ∅ )
79 fisupcl ( ( < Or ℕ0 ∧ ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ∈ Fin ∧ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ≠ ∅ ∧ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ⊆ ℕ0 ) ) → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } )
80 20 65 78 23 79 syl13anc ( 𝑎 ∈ ℕ → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } )
81 oveq2 ( 𝑘 = 𝑙 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 𝑙 ) )
82 81 breq1d ( 𝑘 = 𝑙 → ( ( 2 ↑ 𝑘 ) ∥ 𝑎 ↔ ( 2 ↑ 𝑙 ) ∥ 𝑎 ) )
83 82 cbvrabv { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } = { 𝑙 ∈ ℕ0 ∣ ( 2 ↑ 𝑙 ) ∥ 𝑎 }
84 80 83 eleqtrdi ( 𝑎 ∈ ℕ → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ { 𝑙 ∈ ℕ0 ∣ ( 2 ↑ 𝑙 ) ∥ 𝑎 } )
85 oveq2 ( 𝑙 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) → ( 2 ↑ 𝑙 ) = ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) )
86 85 breq1d ( 𝑙 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) → ( ( 2 ↑ 𝑙 ) ∥ 𝑎 ↔ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∥ 𝑎 ) )
87 86 elrab ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ { 𝑙 ∈ ℕ0 ∣ ( 2 ↑ 𝑙 ) ∥ 𝑎 } ↔ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ∧ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∥ 𝑎 ) )
88 84 87 sylib ( 𝑎 ∈ ℕ → ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ∧ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∥ 𝑎 ) )
89 88 simprd ( 𝑎 ∈ ℕ → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∥ 𝑎 )
90 nndivdvds ( ( 𝑎 ∈ ℕ ∧ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℕ ) → ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∥ 𝑎 ↔ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℕ ) )
91 90 biimpa ( ( ( 𝑎 ∈ ℕ ∧ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℕ ) ∧ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∥ 𝑎 ) → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℕ )
92 14 54 89 91 syl21anc ( 𝑎 ∈ ℕ → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℕ )
93 1nn0 1 ∈ ℕ0
94 93 a1i ( 𝑎 ∈ ℕ → 1 ∈ ℕ0 )
95 53 94 nn0addcld ( 𝑎 ∈ ℕ → ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ ℕ0 )
96 53 nn0red ( 𝑎 ∈ ℕ → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℝ )
97 96 ltp1d ( 𝑎 ∈ ℕ → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) < ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) )
98 20 52 supub ( 𝑎 ∈ ℕ → ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } → ¬ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) < ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) )
99 97 98 mt2d ( 𝑎 ∈ ℕ → ¬ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } )
100 83 eleq2i ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ↔ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ { 𝑙 ∈ ℕ0 ∣ ( 2 ↑ 𝑙 ) ∥ 𝑎 } )
101 99 100 sylnib ( 𝑎 ∈ ℕ → ¬ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ { 𝑙 ∈ ℕ0 ∣ ( 2 ↑ 𝑙 ) ∥ 𝑎 } )
102 oveq2 ( 𝑙 = ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) → ( 2 ↑ 𝑙 ) = ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) )
103 102 breq1d ( 𝑙 = ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) → ( ( 2 ↑ 𝑙 ) ∥ 𝑎 ↔ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) )
104 103 elrab ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ { 𝑙 ∈ ℕ0 ∣ ( 2 ↑ 𝑙 ) ∥ 𝑎 } ↔ ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ ℕ0 ∧ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) )
105 101 104 sylnib ( 𝑎 ∈ ℕ → ¬ ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ ℕ0 ∧ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) )
106 imnan ( ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ ℕ0 → ¬ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) ↔ ¬ ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ ℕ0 ∧ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) )
107 105 106 sylibr ( 𝑎 ∈ ℕ → ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ ℕ0 → ¬ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) )
108 95 107 mpd ( 𝑎 ∈ ℕ → ¬ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 )
109 expp1 ( ( 2 ∈ ℂ ∧ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ) → ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) = ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) )
110 68 53 109 sylancr ( 𝑎 ∈ ℕ → ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) = ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) )
111 110 breq1d ( 𝑎 ∈ ℕ → ( ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ↔ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ 𝑎 ) )
112 108 111 mtbid ( 𝑎 ∈ ℕ → ¬ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ 𝑎 )
113 nncn ( 𝑎 ∈ ℕ → 𝑎 ∈ ℂ )
114 54 nncnd ( 𝑎 ∈ ℕ → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℂ )
115 54 nnne0d ( 𝑎 ∈ ℕ → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ≠ 0 )
116 113 114 115 divcan2d ( 𝑎 ∈ ℕ → ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) = 𝑎 )
117 116 eqcomd ( 𝑎 ∈ ℕ → 𝑎 = ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) )
118 117 breq2d ( 𝑎 ∈ ℕ → ( ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ 𝑎 ↔ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) )
119 15 nnzd ( 𝑎 ∈ ℕ → 2 ∈ ℤ )
120 92 nnzd ( 𝑎 ∈ ℕ → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℤ )
121 54 nnzd ( 𝑎 ∈ ℕ → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℤ )
122 dvdscmulr ( ( 2 ∈ ℤ ∧ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℤ ∧ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℤ ∧ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ≠ 0 ) ) → ( ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ↔ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) )
123 119 120 121 115 122 syl112anc ( 𝑎 ∈ ℕ → ( ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ↔ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) )
124 118 123 bitrd ( 𝑎 ∈ ℕ → ( ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ 𝑎 ↔ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) )
125 112 124 mtbid ( 𝑎 ∈ ℕ → ¬ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) )
126 breq2 ( 𝑧 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → ( 2 ∥ 𝑧 ↔ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) )
127 126 notbid ( 𝑧 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → ( ¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) )
128 127 1 elrab2 ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ 𝐽 ↔ ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℕ ∧ ¬ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) )
129 92 125 128 sylanbrc ( 𝑎 ∈ ℕ → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ 𝐽 )
130 129 53 jca ( 𝑎 ∈ ℕ → ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ 𝐽 ∧ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ) )
131 130 adantl ( ( ⊤ ∧ 𝑎 ∈ ℕ ) → ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ 𝐽 ∧ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ) )
132 simpr ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) )
133 3 a1i ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 2 ∈ ℕ )
134 simplr ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑦 ∈ ℕ0 )
135 133 134 nnexpcld ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 2 ↑ 𝑦 ) ∈ ℕ )
136 8 sseli ( 𝑥𝐽𝑥 ∈ ℕ )
137 136 ad2antrr ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑥 ∈ ℕ )
138 135 137 nnmulcld ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) ∈ ℕ )
139 132 138 eqeltrd ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑎 ∈ ℕ )
140 simplll ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥𝐽 )
141 breq2 ( 𝑧 = 𝑥 → ( 2 ∥ 𝑧 ↔ 2 ∥ 𝑥 ) )
142 141 notbid ( 𝑧 = 𝑥 → ( ¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥 ) )
143 142 1 elrab2 ( 𝑥𝐽 ↔ ( 𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥 ) )
144 143 simprbi ( 𝑥𝐽 → ¬ 2 ∥ 𝑥 )
145 2z 2 ∈ ℤ
146 134 adantr ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑦 ∈ ℕ0 )
147 146 nn0zd ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑦 ∈ ℤ )
148 19 a1i ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → < Or ℕ0 )
149 139 52 syl ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ∃ 𝑚 ∈ ℕ0 ( ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ¬ 𝑚 < 𝑛 ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑛 < 𝑚 → ∃ 𝑜 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 < 𝑜 ) ) )
150 149 adantr ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ∃ 𝑚 ∈ ℕ0 ( ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ¬ 𝑚 < 𝑛 ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑛 < 𝑚 → ∃ 𝑜 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 < 𝑜 ) ) )
151 148 150 supcl ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 )
152 151 nn0zd ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℤ )
153 simpr ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) )
154 znnsub ( ( 𝑦 ∈ ℤ ∧ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℤ ) → ( 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ↔ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ∈ ℕ ) )
155 154 biimpa ( ( ( 𝑦 ∈ ℤ ∧ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℤ ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ∈ ℕ )
156 147 152 153 155 syl21anc ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ∈ ℕ )
157 iddvdsexp ( ( 2 ∈ ℤ ∧ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ∈ ℕ ) → 2 ∥ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) )
158 145 156 157 sylancr ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 2 ∥ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) )
159 145 a1i ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 2 ∈ ℤ )
160 139 120 syl ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℤ )
161 160 adantr ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℤ )
162 156 nnnn0d ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ∈ ℕ0 )
163 zexpcl ( ( 2 ∈ ℤ ∧ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ∈ ℕ0 ) → ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ∈ ℤ )
164 145 162 163 sylancr ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ∈ ℤ )
165 dvdsmultr2 ( ( 2 ∈ ℤ ∧ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℤ ∧ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ∈ ℤ ) → ( 2 ∥ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) → 2 ∥ ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) ) )
166 159 161 164 165 syl3anc ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ∥ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) → 2 ∥ ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) ) )
167 158 166 mpd ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 2 ∥ ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) )
168 137 adantr ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 ∈ ℕ )
169 168 nncnd ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 ∈ ℂ )
170 2cnd ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 2 ∈ ℂ )
171 170 162 expcld ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ∈ ℂ )
172 139 adantr ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 ∈ ℕ )
173 172 nncnd ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 ∈ ℂ )
174 172 114 syl ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℂ )
175 2ne0 2 ≠ 0
176 175 a1i ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 2 ≠ 0 )
177 170 176 152 expne0d ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ≠ 0 )
178 173 174 177 divcld ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℂ )
179 171 178 mulcld ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ∈ ℂ )
180 170 146 expcld ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ 𝑦 ) ∈ ℂ )
181 170 176 147 expne0d ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ 𝑦 ) ≠ 0 )
182 172 117 syl ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 = ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) )
183 simplr ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) )
184 146 nn0cnd ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑦 ∈ ℂ )
185 151 nn0cnd ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℂ )
186 184 185 pncan3d ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 𝑦 + ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) )
187 186 oveq2d ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ ( 𝑦 + ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) = ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) )
188 170 162 146 expaddd ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ ( 𝑦 + ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) = ( ( 2 ↑ 𝑦 ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) )
189 187 188 eqtr3d ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) = ( ( 2 ↑ 𝑦 ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) )
190 189 oveq1d ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) = ( ( ( 2 ↑ 𝑦 ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) )
191 182 183 190 3eqtr3d ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) = ( ( ( 2 ↑ 𝑦 ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) )
192 180 171 178 mulassd ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( ( 2 ↑ 𝑦 ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) = ( ( 2 ↑ 𝑦 ) · ( ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) )
193 191 192 eqtrd ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) = ( ( 2 ↑ 𝑦 ) · ( ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) )
194 169 179 180 181 193 mulcanad ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 = ( ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) )
195 178 171 mulcomd ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) = ( ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) )
196 194 195 eqtr4d ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 = ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) )
197 167 196 breqtrrd ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 2 ∥ 𝑥 )
198 144 197 nsyl3 ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ¬ 𝑥𝐽 )
199 140 198 pm2.65da ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ¬ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) )
200 137 nnzd ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑥 ∈ ℤ )
201 135 nnzd ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 2 ↑ 𝑦 ) ∈ ℤ )
202 139 nnzd ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑎 ∈ ℤ )
203 135 nncnd ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 2 ↑ 𝑦 ) ∈ ℂ )
204 137 nncnd ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑥 ∈ ℂ )
205 203 204 mulcomd ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) = ( 𝑥 · ( 2 ↑ 𝑦 ) ) )
206 132 205 eqtr2d ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑥 · ( 2 ↑ 𝑦 ) ) = 𝑎 )
207 dvds0lem ( ( ( 𝑥 ∈ ℤ ∧ ( 2 ↑ 𝑦 ) ∈ ℤ ∧ 𝑎 ∈ ℤ ) ∧ ( 𝑥 · ( 2 ↑ 𝑦 ) ) = 𝑎 ) → ( 2 ↑ 𝑦 ) ∥ 𝑎 )
208 200 201 202 206 207 syl31anc ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 2 ↑ 𝑦 ) ∥ 𝑎 )
209 oveq2 ( 𝑘 = 𝑦 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 𝑦 ) )
210 209 breq1d ( 𝑘 = 𝑦 → ( ( 2 ↑ 𝑘 ) ∥ 𝑎 ↔ ( 2 ↑ 𝑦 ) ∥ 𝑎 ) )
211 210 elrab ( 𝑦 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ↔ ( 𝑦 ∈ ℕ0 ∧ ( 2 ↑ 𝑦 ) ∥ 𝑎 ) )
212 134 208 211 sylanbrc ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑦 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } )
213 19 a1i ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → < Or ℕ0 )
214 213 149 supub ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑦 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } → ¬ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) < 𝑦 ) )
215 212 214 mpd ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ¬ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) < 𝑦 )
216 134 nn0red ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑦 ∈ ℝ )
217 139 96 syl ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℝ )
218 216 217 lttri3d ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ↔ ( ¬ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∧ ¬ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) < 𝑦 ) ) )
219 199 215 218 mpbir2and ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) )
220 simplr ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) )
221 139 adantr ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 ∈ ℕ )
222 221 nncnd ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 ∈ ℂ )
223 137 adantr ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 ∈ ℕ )
224 223 nncnd ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 ∈ ℂ )
225 nnexpcl ( ( 2 ∈ ℕ ∧ 𝑦 ∈ ℕ0 ) → ( 2 ↑ 𝑦 ) ∈ ℕ )
226 3 225 mpan ( 𝑦 ∈ ℕ0 → ( 2 ↑ 𝑦 ) ∈ ℕ )
227 226 nncnd ( 𝑦 ∈ ℕ0 → ( 2 ↑ 𝑦 ) ∈ ℂ )
228 226 nnne0d ( 𝑦 ∈ ℕ0 → ( 2 ↑ 𝑦 ) ≠ 0 )
229 227 228 jca ( 𝑦 ∈ ℕ0 → ( ( 2 ↑ 𝑦 ) ∈ ℂ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) )
230 229 ad3antlr ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 2 ↑ 𝑦 ) ∈ ℂ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) )
231 divmul2 ( ( 𝑎 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ( ( 2 ↑ 𝑦 ) ∈ ℂ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) ) → ( ( 𝑎 / ( 2 ↑ 𝑦 ) ) = 𝑥𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) )
232 222 224 230 231 syl3anc ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 𝑎 / ( 2 ↑ 𝑦 ) ) = 𝑥𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) )
233 220 232 mpbird ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 𝑎 / ( 2 ↑ 𝑦 ) ) = 𝑥 )
234 simpr ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) )
235 234 oveq2d ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ 𝑦 ) = ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) )
236 235 oveq2d ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 𝑎 / ( 2 ↑ 𝑦 ) ) = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) )
237 233 236 eqtr3d ( ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) )
238 237 ex ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) → 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) )
239 219 238 jcai ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∧ 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) )
240 239 ancomd ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) )
241 139 240 jca ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) )
242 simprl ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) )
243 129 adantr ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ 𝐽 )
244 242 243 eqeltrd ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → 𝑥𝐽 )
245 simprr ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) )
246 53 adantr ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 )
247 245 246 eqeltrd ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → 𝑦 ∈ ℕ0 )
248 117 adantr ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → 𝑎 = ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) )
249 245 oveq2d ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → ( 2 ↑ 𝑦 ) = ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) )
250 249 242 oveq12d ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) = ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) )
251 248 250 eqtr4d ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) )
252 244 247 251 jca31 ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) )
253 241 252 impbii ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ↔ ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) )
254 253 a1i ( ⊤ → ( ( ( 𝑥𝐽𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ↔ ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) )
255 2 13 131 254 f1od2 ( ⊤ → 𝐹 : ( 𝐽 × ℕ0 ) –1-1-onto→ ℕ )
256 255 mptru 𝐹 : ( 𝐽 × ℕ0 ) –1-1-onto→ ℕ