Step |
Hyp |
Ref |
Expression |
1 |
|
oddpwdc.j |
⊢ 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } |
2 |
|
oddpwdc.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
3 |
|
2nn |
⊢ 2 ∈ ℕ |
4 |
3
|
a1i |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑥 ∈ 𝐽 ) → 2 ∈ ℕ ) |
5 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑥 ∈ 𝐽 ) → 𝑦 ∈ ℕ0 ) |
6 |
4 5
|
nnexpcld |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑥 ∈ 𝐽 ) → ( 2 ↑ 𝑦 ) ∈ ℕ ) |
7 |
|
ssrab2 |
⊢ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ⊆ ℕ |
8 |
1 7
|
eqsstri |
⊢ 𝐽 ⊆ ℕ |
9 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ 𝐽 ) |
10 |
8 9
|
sselid |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ ℕ ) |
11 |
6 10
|
nnmulcld |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑥 ∈ 𝐽 ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) ∈ ℕ ) |
12 |
11
|
ancoms |
⊢ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) ∈ ℕ ) |
13 |
12
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) ∈ ℕ ) |
14 |
|
id |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℕ ) |
15 |
3
|
a1i |
⊢ ( 𝑎 ∈ ℕ → 2 ∈ ℕ ) |
16 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
17 |
|
ltso |
⊢ < Or ℝ |
18 |
|
soss |
⊢ ( ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0 ) ) |
19 |
16 17 18
|
mp2 |
⊢ < Or ℕ0 |
20 |
19
|
a1i |
⊢ ( 𝑎 ∈ ℕ → < Or ℕ0 ) |
21 |
|
0zd |
⊢ ( 𝑎 ∈ ℕ → 0 ∈ ℤ ) |
22 |
|
ssrab2 |
⊢ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ⊆ ℕ0 |
23 |
22
|
a1i |
⊢ ( 𝑎 ∈ ℕ → { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ⊆ ℕ0 ) |
24 |
|
nnz |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℤ ) |
25 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 𝑛 ) ) |
26 |
25
|
breq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 2 ↑ 𝑘 ) ∥ 𝑎 ↔ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) |
27 |
26
|
elrab |
⊢ ( 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ↔ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) |
28 |
|
simprl |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 𝑛 ∈ ℕ0 ) |
29 |
28
|
nn0red |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 𝑛 ∈ ℝ ) |
30 |
3
|
a1i |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 2 ∈ ℕ ) |
31 |
30 28
|
nnexpcld |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
32 |
31
|
nnred |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
33 |
|
simpl |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 𝑎 ∈ ℕ ) |
34 |
33
|
nnred |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 𝑎 ∈ ℝ ) |
35 |
|
2re |
⊢ 2 ∈ ℝ |
36 |
35
|
leidi |
⊢ 2 ≤ 2 |
37 |
|
nexple |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 2 ∈ ℝ ∧ 2 ≤ 2 ) → 𝑛 ≤ ( 2 ↑ 𝑛 ) ) |
38 |
35 36 37
|
mp3an23 |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ≤ ( 2 ↑ 𝑛 ) ) |
39 |
38
|
ad2antrl |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 𝑛 ≤ ( 2 ↑ 𝑛 ) ) |
40 |
31
|
nnzd |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → ( 2 ↑ 𝑛 ) ∈ ℤ ) |
41 |
|
simprr |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → ( 2 ↑ 𝑛 ) ∥ 𝑎 ) |
42 |
|
dvdsle |
⊢ ( ( ( 2 ↑ 𝑛 ) ∈ ℤ ∧ 𝑎 ∈ ℕ ) → ( ( 2 ↑ 𝑛 ) ∥ 𝑎 → ( 2 ↑ 𝑛 ) ≤ 𝑎 ) ) |
43 |
42
|
imp |
⊢ ( ( ( ( 2 ↑ 𝑛 ) ∈ ℤ ∧ 𝑎 ∈ ℕ ) ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) → ( 2 ↑ 𝑛 ) ≤ 𝑎 ) |
44 |
40 33 41 43
|
syl21anc |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → ( 2 ↑ 𝑛 ) ≤ 𝑎 ) |
45 |
29 32 34 39 44
|
letrd |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 𝑛 ≤ 𝑎 ) |
46 |
27 45
|
sylan2b |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 𝑛 ≤ 𝑎 ) |
47 |
46
|
ralrimiva |
⊢ ( 𝑎 ∈ ℕ → ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 ≤ 𝑎 ) |
48 |
|
brralrspcev |
⊢ ( ( 𝑎 ∈ ℤ ∧ ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 ≤ 𝑎 ) → ∃ 𝑚 ∈ ℤ ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 ≤ 𝑚 ) |
49 |
24 47 48
|
syl2anc |
⊢ ( 𝑎 ∈ ℕ → ∃ 𝑚 ∈ ℤ ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 ≤ 𝑚 ) |
50 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
51 |
50
|
uzsupss |
⊢ ( ( 0 ∈ ℤ ∧ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ⊆ ℕ0 ∧ ∃ 𝑚 ∈ ℤ ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 ≤ 𝑚 ) → ∃ 𝑚 ∈ ℕ0 ( ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ¬ 𝑚 < 𝑛 ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑛 < 𝑚 → ∃ 𝑜 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 < 𝑜 ) ) ) |
52 |
21 23 49 51
|
syl3anc |
⊢ ( 𝑎 ∈ ℕ → ∃ 𝑚 ∈ ℕ0 ( ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ¬ 𝑚 < 𝑛 ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑛 < 𝑚 → ∃ 𝑜 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 < 𝑜 ) ) ) |
53 |
20 52
|
supcl |
⊢ ( 𝑎 ∈ ℕ → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ) |
54 |
15 53
|
nnexpcld |
⊢ ( 𝑎 ∈ ℕ → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℕ ) |
55 |
|
fzfi |
⊢ ( 0 ... 𝑎 ) ∈ Fin |
56 |
|
0zd |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 0 ∈ ℤ ) |
57 |
24
|
adantr |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 𝑎 ∈ ℤ ) |
58 |
27 28
|
sylan2b |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 𝑛 ∈ ℕ0 ) |
59 |
58
|
nn0zd |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 𝑛 ∈ ℤ ) |
60 |
58
|
nn0ge0d |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 0 ≤ 𝑛 ) |
61 |
56 57 59 60 46
|
elfzd |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 𝑛 ∈ ( 0 ... 𝑎 ) ) |
62 |
61
|
ex |
⊢ ( 𝑎 ∈ ℕ → ( 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } → 𝑛 ∈ ( 0 ... 𝑎 ) ) ) |
63 |
62
|
ssrdv |
⊢ ( 𝑎 ∈ ℕ → { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ⊆ ( 0 ... 𝑎 ) ) |
64 |
|
ssfi |
⊢ ( ( ( 0 ... 𝑎 ) ∈ Fin ∧ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ⊆ ( 0 ... 𝑎 ) ) → { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ∈ Fin ) |
65 |
55 63 64
|
sylancr |
⊢ ( 𝑎 ∈ ℕ → { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ∈ Fin ) |
66 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
67 |
66
|
a1i |
⊢ ( 𝑎 ∈ ℕ → 0 ∈ ℕ0 ) |
68 |
|
2cn |
⊢ 2 ∈ ℂ |
69 |
|
exp0 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 ) |
70 |
68 69
|
ax-mp |
⊢ ( 2 ↑ 0 ) = 1 |
71 |
|
1dvds |
⊢ ( 𝑎 ∈ ℤ → 1 ∥ 𝑎 ) |
72 |
24 71
|
syl |
⊢ ( 𝑎 ∈ ℕ → 1 ∥ 𝑎 ) |
73 |
70 72
|
eqbrtrid |
⊢ ( 𝑎 ∈ ℕ → ( 2 ↑ 0 ) ∥ 𝑎 ) |
74 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 0 ) ) |
75 |
74
|
breq1d |
⊢ ( 𝑘 = 0 → ( ( 2 ↑ 𝑘 ) ∥ 𝑎 ↔ ( 2 ↑ 0 ) ∥ 𝑎 ) ) |
76 |
75
|
elrab |
⊢ ( 0 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ↔ ( 0 ∈ ℕ0 ∧ ( 2 ↑ 0 ) ∥ 𝑎 ) ) |
77 |
67 73 76
|
sylanbrc |
⊢ ( 𝑎 ∈ ℕ → 0 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) |
78 |
77
|
ne0d |
⊢ ( 𝑎 ∈ ℕ → { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ≠ ∅ ) |
79 |
|
fisupcl |
⊢ ( ( < Or ℕ0 ∧ ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ∈ Fin ∧ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ≠ ∅ ∧ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ⊆ ℕ0 ) ) → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) |
80 |
20 65 78 23 79
|
syl13anc |
⊢ ( 𝑎 ∈ ℕ → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) |
81 |
|
oveq2 |
⊢ ( 𝑘 = 𝑙 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 𝑙 ) ) |
82 |
81
|
breq1d |
⊢ ( 𝑘 = 𝑙 → ( ( 2 ↑ 𝑘 ) ∥ 𝑎 ↔ ( 2 ↑ 𝑙 ) ∥ 𝑎 ) ) |
83 |
82
|
cbvrabv |
⊢ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } = { 𝑙 ∈ ℕ0 ∣ ( 2 ↑ 𝑙 ) ∥ 𝑎 } |
84 |
80 83
|
eleqtrdi |
⊢ ( 𝑎 ∈ ℕ → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ { 𝑙 ∈ ℕ0 ∣ ( 2 ↑ 𝑙 ) ∥ 𝑎 } ) |
85 |
|
oveq2 |
⊢ ( 𝑙 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) → ( 2 ↑ 𝑙 ) = ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) |
86 |
85
|
breq1d |
⊢ ( 𝑙 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) → ( ( 2 ↑ 𝑙 ) ∥ 𝑎 ↔ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∥ 𝑎 ) ) |
87 |
86
|
elrab |
⊢ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ { 𝑙 ∈ ℕ0 ∣ ( 2 ↑ 𝑙 ) ∥ 𝑎 } ↔ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ∧ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∥ 𝑎 ) ) |
88 |
84 87
|
sylib |
⊢ ( 𝑎 ∈ ℕ → ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ∧ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∥ 𝑎 ) ) |
89 |
88
|
simprd |
⊢ ( 𝑎 ∈ ℕ → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∥ 𝑎 ) |
90 |
|
nndivdvds |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℕ ) → ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∥ 𝑎 ↔ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℕ ) ) |
91 |
90
|
biimpa |
⊢ ( ( ( 𝑎 ∈ ℕ ∧ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℕ ) ∧ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∥ 𝑎 ) → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℕ ) |
92 |
14 54 89 91
|
syl21anc |
⊢ ( 𝑎 ∈ ℕ → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℕ ) |
93 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
94 |
93
|
a1i |
⊢ ( 𝑎 ∈ ℕ → 1 ∈ ℕ0 ) |
95 |
53 94
|
nn0addcld |
⊢ ( 𝑎 ∈ ℕ → ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ ℕ0 ) |
96 |
53
|
nn0red |
⊢ ( 𝑎 ∈ ℕ → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℝ ) |
97 |
96
|
ltp1d |
⊢ ( 𝑎 ∈ ℕ → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) < ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) |
98 |
20 52
|
supub |
⊢ ( 𝑎 ∈ ℕ → ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } → ¬ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) < ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ) |
99 |
97 98
|
mt2d |
⊢ ( 𝑎 ∈ ℕ → ¬ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) |
100 |
83
|
eleq2i |
⊢ ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ↔ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ { 𝑙 ∈ ℕ0 ∣ ( 2 ↑ 𝑙 ) ∥ 𝑎 } ) |
101 |
99 100
|
sylnib |
⊢ ( 𝑎 ∈ ℕ → ¬ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ { 𝑙 ∈ ℕ0 ∣ ( 2 ↑ 𝑙 ) ∥ 𝑎 } ) |
102 |
|
oveq2 |
⊢ ( 𝑙 = ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) → ( 2 ↑ 𝑙 ) = ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ) |
103 |
102
|
breq1d |
⊢ ( 𝑙 = ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) → ( ( 2 ↑ 𝑙 ) ∥ 𝑎 ↔ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) ) |
104 |
103
|
elrab |
⊢ ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ { 𝑙 ∈ ℕ0 ∣ ( 2 ↑ 𝑙 ) ∥ 𝑎 } ↔ ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ ℕ0 ∧ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) ) |
105 |
101 104
|
sylnib |
⊢ ( 𝑎 ∈ ℕ → ¬ ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ ℕ0 ∧ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) ) |
106 |
|
imnan |
⊢ ( ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ ℕ0 → ¬ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) ↔ ¬ ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ ℕ0 ∧ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) ) |
107 |
105 106
|
sylibr |
⊢ ( 𝑎 ∈ ℕ → ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ ℕ0 → ¬ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) ) |
108 |
95 107
|
mpd |
⊢ ( 𝑎 ∈ ℕ → ¬ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) |
109 |
|
expp1 |
⊢ ( ( 2 ∈ ℂ ∧ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ) → ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) = ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ) |
110 |
68 53 109
|
sylancr |
⊢ ( 𝑎 ∈ ℕ → ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) = ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ) |
111 |
110
|
breq1d |
⊢ ( 𝑎 ∈ ℕ → ( ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ↔ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ 𝑎 ) ) |
112 |
108 111
|
mtbid |
⊢ ( 𝑎 ∈ ℕ → ¬ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ 𝑎 ) |
113 |
|
nncn |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℂ ) |
114 |
54
|
nncnd |
⊢ ( 𝑎 ∈ ℕ → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℂ ) |
115 |
54
|
nnne0d |
⊢ ( 𝑎 ∈ ℕ → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ≠ 0 ) |
116 |
113 114 115
|
divcan2d |
⊢ ( 𝑎 ∈ ℕ → ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) = 𝑎 ) |
117 |
116
|
eqcomd |
⊢ ( 𝑎 ∈ ℕ → 𝑎 = ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
118 |
117
|
breq2d |
⊢ ( 𝑎 ∈ ℕ → ( ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ 𝑎 ↔ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) ) |
119 |
15
|
nnzd |
⊢ ( 𝑎 ∈ ℕ → 2 ∈ ℤ ) |
120 |
92
|
nnzd |
⊢ ( 𝑎 ∈ ℕ → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℤ ) |
121 |
54
|
nnzd |
⊢ ( 𝑎 ∈ ℕ → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℤ ) |
122 |
|
dvdscmulr |
⊢ ( ( 2 ∈ ℤ ∧ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℤ ∧ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℤ ∧ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ≠ 0 ) ) → ( ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ↔ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
123 |
119 120 121 115 122
|
syl112anc |
⊢ ( 𝑎 ∈ ℕ → ( ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ↔ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
124 |
118 123
|
bitrd |
⊢ ( 𝑎 ∈ ℕ → ( ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ 𝑎 ↔ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
125 |
112 124
|
mtbid |
⊢ ( 𝑎 ∈ ℕ → ¬ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) |
126 |
|
breq2 |
⊢ ( 𝑧 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → ( 2 ∥ 𝑧 ↔ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
127 |
126
|
notbid |
⊢ ( 𝑧 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → ( ¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
128 |
127 1
|
elrab2 |
⊢ ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ 𝐽 ↔ ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℕ ∧ ¬ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
129 |
92 125 128
|
sylanbrc |
⊢ ( 𝑎 ∈ ℕ → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ 𝐽 ) |
130 |
129 53
|
jca |
⊢ ( 𝑎 ∈ ℕ → ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ 𝐽 ∧ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ) ) |
131 |
130
|
adantl |
⊢ ( ( ⊤ ∧ 𝑎 ∈ ℕ ) → ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ 𝐽 ∧ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ) ) |
132 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
133 |
3
|
a1i |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 2 ∈ ℕ ) |
134 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑦 ∈ ℕ0 ) |
135 |
133 134
|
nnexpcld |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 2 ↑ 𝑦 ) ∈ ℕ ) |
136 |
8
|
sseli |
⊢ ( 𝑥 ∈ 𝐽 → 𝑥 ∈ ℕ ) |
137 |
136
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑥 ∈ ℕ ) |
138 |
135 137
|
nnmulcld |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) ∈ ℕ ) |
139 |
132 138
|
eqeltrd |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑎 ∈ ℕ ) |
140 |
|
simplll |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 ∈ 𝐽 ) |
141 |
|
breq2 |
⊢ ( 𝑧 = 𝑥 → ( 2 ∥ 𝑧 ↔ 2 ∥ 𝑥 ) ) |
142 |
141
|
notbid |
⊢ ( 𝑧 = 𝑥 → ( ¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥 ) ) |
143 |
142 1
|
elrab2 |
⊢ ( 𝑥 ∈ 𝐽 ↔ ( 𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥 ) ) |
144 |
143
|
simprbi |
⊢ ( 𝑥 ∈ 𝐽 → ¬ 2 ∥ 𝑥 ) |
145 |
|
2z |
⊢ 2 ∈ ℤ |
146 |
134
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑦 ∈ ℕ0 ) |
147 |
146
|
nn0zd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑦 ∈ ℤ ) |
148 |
19
|
a1i |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → < Or ℕ0 ) |
149 |
139 52
|
syl |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ∃ 𝑚 ∈ ℕ0 ( ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ¬ 𝑚 < 𝑛 ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑛 < 𝑚 → ∃ 𝑜 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 < 𝑜 ) ) ) |
150 |
149
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ∃ 𝑚 ∈ ℕ0 ( ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ¬ 𝑚 < 𝑛 ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑛 < 𝑚 → ∃ 𝑜 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 < 𝑜 ) ) ) |
151 |
148 150
|
supcl |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ) |
152 |
151
|
nn0zd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℤ ) |
153 |
|
simpr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) |
154 |
|
znnsub |
⊢ ( ( 𝑦 ∈ ℤ ∧ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℤ ) → ( 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ↔ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ∈ ℕ ) ) |
155 |
154
|
biimpa |
⊢ ( ( ( 𝑦 ∈ ℤ ∧ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℤ ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ∈ ℕ ) |
156 |
147 152 153 155
|
syl21anc |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ∈ ℕ ) |
157 |
|
iddvdsexp |
⊢ ( ( 2 ∈ ℤ ∧ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ∈ ℕ ) → 2 ∥ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) |
158 |
145 156 157
|
sylancr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 2 ∥ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) |
159 |
145
|
a1i |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 2 ∈ ℤ ) |
160 |
139 120
|
syl |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℤ ) |
161 |
160
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℤ ) |
162 |
156
|
nnnn0d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ∈ ℕ0 ) |
163 |
|
zexpcl |
⊢ ( ( 2 ∈ ℤ ∧ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ∈ ℕ0 ) → ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ∈ ℤ ) |
164 |
145 162 163
|
sylancr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ∈ ℤ ) |
165 |
|
dvdsmultr2 |
⊢ ( ( 2 ∈ ℤ ∧ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℤ ∧ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ∈ ℤ ) → ( 2 ∥ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) → 2 ∥ ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) ) ) |
166 |
159 161 164 165
|
syl3anc |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ∥ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) → 2 ∥ ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) ) ) |
167 |
158 166
|
mpd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 2 ∥ ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) ) |
168 |
137
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 ∈ ℕ ) |
169 |
168
|
nncnd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 ∈ ℂ ) |
170 |
|
2cnd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 2 ∈ ℂ ) |
171 |
170 162
|
expcld |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ∈ ℂ ) |
172 |
139
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 ∈ ℕ ) |
173 |
172
|
nncnd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 ∈ ℂ ) |
174 |
172 114
|
syl |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℂ ) |
175 |
|
2ne0 |
⊢ 2 ≠ 0 |
176 |
175
|
a1i |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 2 ≠ 0 ) |
177 |
170 176 152
|
expne0d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ≠ 0 ) |
178 |
173 174 177
|
divcld |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℂ ) |
179 |
171 178
|
mulcld |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ∈ ℂ ) |
180 |
170 146
|
expcld |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ 𝑦 ) ∈ ℂ ) |
181 |
170 176 147
|
expne0d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ 𝑦 ) ≠ 0 ) |
182 |
172 117
|
syl |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 = ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
183 |
|
simplr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
184 |
146
|
nn0cnd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑦 ∈ ℂ ) |
185 |
151
|
nn0cnd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℂ ) |
186 |
184 185
|
pncan3d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 𝑦 + ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) |
187 |
186
|
oveq2d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ ( 𝑦 + ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) = ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) |
188 |
170 162 146
|
expaddd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ ( 𝑦 + ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) = ( ( 2 ↑ 𝑦 ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) ) |
189 |
187 188
|
eqtr3d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) = ( ( 2 ↑ 𝑦 ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) ) |
190 |
189
|
oveq1d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) = ( ( ( 2 ↑ 𝑦 ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
191 |
182 183 190
|
3eqtr3d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) = ( ( ( 2 ↑ 𝑦 ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
192 |
180 171 178
|
mulassd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( ( 2 ↑ 𝑦 ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) = ( ( 2 ↑ 𝑦 ) · ( ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) ) |
193 |
191 192
|
eqtrd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) = ( ( 2 ↑ 𝑦 ) · ( ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) ) |
194 |
169 179 180 181 193
|
mulcanad |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 = ( ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
195 |
178 171
|
mulcomd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) = ( ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
196 |
194 195
|
eqtr4d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 = ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) ) |
197 |
167 196
|
breqtrrd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 2 ∥ 𝑥 ) |
198 |
144 197
|
nsyl3 |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ¬ 𝑥 ∈ 𝐽 ) |
199 |
140 198
|
pm2.65da |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ¬ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) |
200 |
137
|
nnzd |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑥 ∈ ℤ ) |
201 |
135
|
nnzd |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 2 ↑ 𝑦 ) ∈ ℤ ) |
202 |
139
|
nnzd |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑎 ∈ ℤ ) |
203 |
135
|
nncnd |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 2 ↑ 𝑦 ) ∈ ℂ ) |
204 |
137
|
nncnd |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑥 ∈ ℂ ) |
205 |
203 204
|
mulcomd |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) = ( 𝑥 · ( 2 ↑ 𝑦 ) ) ) |
206 |
132 205
|
eqtr2d |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑥 · ( 2 ↑ 𝑦 ) ) = 𝑎 ) |
207 |
|
dvds0lem |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ ( 2 ↑ 𝑦 ) ∈ ℤ ∧ 𝑎 ∈ ℤ ) ∧ ( 𝑥 · ( 2 ↑ 𝑦 ) ) = 𝑎 ) → ( 2 ↑ 𝑦 ) ∥ 𝑎 ) |
208 |
200 201 202 206 207
|
syl31anc |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 2 ↑ 𝑦 ) ∥ 𝑎 ) |
209 |
|
oveq2 |
⊢ ( 𝑘 = 𝑦 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 𝑦 ) ) |
210 |
209
|
breq1d |
⊢ ( 𝑘 = 𝑦 → ( ( 2 ↑ 𝑘 ) ∥ 𝑎 ↔ ( 2 ↑ 𝑦 ) ∥ 𝑎 ) ) |
211 |
210
|
elrab |
⊢ ( 𝑦 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ↔ ( 𝑦 ∈ ℕ0 ∧ ( 2 ↑ 𝑦 ) ∥ 𝑎 ) ) |
212 |
134 208 211
|
sylanbrc |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑦 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) |
213 |
19
|
a1i |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → < Or ℕ0 ) |
214 |
213 149
|
supub |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑦 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } → ¬ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) < 𝑦 ) ) |
215 |
212 214
|
mpd |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ¬ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) < 𝑦 ) |
216 |
134
|
nn0red |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑦 ∈ ℝ ) |
217 |
139 96
|
syl |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℝ ) |
218 |
216 217
|
lttri3d |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ↔ ( ¬ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∧ ¬ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) < 𝑦 ) ) ) |
219 |
199 215 218
|
mpbir2and |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) |
220 |
|
simplr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
221 |
139
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 ∈ ℕ ) |
222 |
221
|
nncnd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 ∈ ℂ ) |
223 |
137
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 ∈ ℕ ) |
224 |
223
|
nncnd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 ∈ ℂ ) |
225 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑦 ∈ ℕ0 ) → ( 2 ↑ 𝑦 ) ∈ ℕ ) |
226 |
3 225
|
mpan |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ 𝑦 ) ∈ ℕ ) |
227 |
226
|
nncnd |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ 𝑦 ) ∈ ℂ ) |
228 |
226
|
nnne0d |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ 𝑦 ) ≠ 0 ) |
229 |
227 228
|
jca |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 2 ↑ 𝑦 ) ∈ ℂ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) ) |
230 |
229
|
ad3antlr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 2 ↑ 𝑦 ) ∈ ℂ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) ) |
231 |
|
divmul2 |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ( ( 2 ↑ 𝑦 ) ∈ ℂ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) ) → ( ( 𝑎 / ( 2 ↑ 𝑦 ) ) = 𝑥 ↔ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ) |
232 |
222 224 230 231
|
syl3anc |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 𝑎 / ( 2 ↑ 𝑦 ) ) = 𝑥 ↔ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ) |
233 |
220 232
|
mpbird |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 𝑎 / ( 2 ↑ 𝑦 ) ) = 𝑥 ) |
234 |
|
simpr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) |
235 |
234
|
oveq2d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ 𝑦 ) = ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) |
236 |
235
|
oveq2d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 𝑎 / ( 2 ↑ 𝑦 ) ) = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) |
237 |
233 236
|
eqtr3d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) |
238 |
237
|
ex |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) → 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
239 |
219 238
|
jcai |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∧ 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
240 |
239
|
ancomd |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) |
241 |
139 240
|
jca |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) |
242 |
|
simprl |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) |
243 |
129
|
adantr |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ 𝐽 ) |
244 |
242 243
|
eqeltrd |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → 𝑥 ∈ 𝐽 ) |
245 |
|
simprr |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) |
246 |
53
|
adantr |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ) |
247 |
245 246
|
eqeltrd |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → 𝑦 ∈ ℕ0 ) |
248 |
117
|
adantr |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → 𝑎 = ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
249 |
245
|
oveq2d |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → ( 2 ↑ 𝑦 ) = ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) |
250 |
249 242
|
oveq12d |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) = ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
251 |
248 250
|
eqtr4d |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
252 |
244 247 251
|
jca31 |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ) |
253 |
241 252
|
impbii |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ↔ ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) |
254 |
253
|
a1i |
⊢ ( ⊤ → ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ↔ ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
255 |
2 13 131 254
|
f1od2 |
⊢ ( ⊤ → 𝐹 : ( 𝐽 × ℕ0 ) –1-1-onto→ ℕ ) |
256 |
255
|
mptru |
⊢ 𝐹 : ( 𝐽 × ℕ0 ) –1-1-onto→ ℕ |