Metamath Proof Explorer


Theorem oddpwp1fsum

Description: An odd power of a number increased by 1 expressed by a product with a finite sum. (Contributed by AV, 15-Aug-2021)

Ref Expression
Hypotheses pwp1fsum.a ( 𝜑𝐴 ∈ ℂ )
pwp1fsum.n ( 𝜑𝑁 ∈ ℕ )
oddpwp1fsum.n ( 𝜑 → ¬ 2 ∥ 𝑁 )
Assertion oddpwp1fsum ( 𝜑 → ( ( 𝐴𝑁 ) + 1 ) = ( ( 𝐴 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴𝑘 ) ) ) )

Proof

Step Hyp Ref Expression
1 pwp1fsum.a ( 𝜑𝐴 ∈ ℂ )
2 pwp1fsum.n ( 𝜑𝑁 ∈ ℕ )
3 oddpwp1fsum.n ( 𝜑 → ¬ 2 ∥ 𝑁 )
4 2 nnzd ( 𝜑𝑁 ∈ ℤ )
5 oddm1even ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ 2 ∥ ( 𝑁 − 1 ) ) )
6 4 5 syl ( 𝜑 → ( ¬ 2 ∥ 𝑁 ↔ 2 ∥ ( 𝑁 − 1 ) ) )
7 3 6 mpbid ( 𝜑 → 2 ∥ ( 𝑁 − 1 ) )
8 m1expe ( 2 ∥ ( 𝑁 − 1 ) → ( - 1 ↑ ( 𝑁 − 1 ) ) = 1 )
9 7 8 syl ( 𝜑 → ( - 1 ↑ ( 𝑁 − 1 ) ) = 1 )
10 9 oveq1d ( 𝜑 → ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴𝑁 ) ) = ( 1 · ( 𝐴𝑁 ) ) )
11 10 oveq1d ( 𝜑 → ( ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴𝑁 ) ) + 1 ) = ( ( 1 · ( 𝐴𝑁 ) ) + 1 ) )
12 1 2 pwp1fsum ( 𝜑 → ( ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴𝑁 ) ) + 1 ) = ( ( 𝐴 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴𝑘 ) ) ) )
13 2 nnnn0d ( 𝜑𝑁 ∈ ℕ0 )
14 1 13 expcld ( 𝜑 → ( 𝐴𝑁 ) ∈ ℂ )
15 14 mulid2d ( 𝜑 → ( 1 · ( 𝐴𝑁 ) ) = ( 𝐴𝑁 ) )
16 15 oveq1d ( 𝜑 → ( ( 1 · ( 𝐴𝑁 ) ) + 1 ) = ( ( 𝐴𝑁 ) + 1 ) )
17 11 12 16 3eqtr3rd ( 𝜑 → ( ( 𝐴𝑁 ) + 1 ) = ( ( 𝐴 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴𝑘 ) ) ) )