Description: If every term in a sum with an odd number of terms is odd, then the sum is odd. (Contributed by AV, 14-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evensumodd.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
evensumodd.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) | ||
evensumodd.o | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 2 ∥ 𝐵 ) | ||
oddsumodd.a | ⊢ ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ 𝐴 ) ) | ||
Assertion | oddsumodd | ⊢ ( 𝜑 → ¬ 2 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evensumodd.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
2 | evensumodd.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) | |
3 | evensumodd.o | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 2 ∥ 𝐵 ) | |
4 | oddsumodd.a | ⊢ ( 𝜑 → ¬ 2 ∥ ( ♯ ‘ 𝐴 ) ) | |
5 | 1 2 3 | sumodd | ⊢ ( 𝜑 → ( 2 ∥ ( ♯ ‘ 𝐴 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
6 | 4 5 | mtbid | ⊢ ( 𝜑 → ¬ 2 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) |