| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odcl.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | odcl.2 | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 3 |  | odid.3 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 4 |  | odid.4 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 5 |  | simpr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 6 |  | simpl3 | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  𝑁  ∈  ℤ ) | 
						
							| 7 |  | dvdsval3 | ⊢ ( ( ( 𝑂 ‘ 𝐴 )  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑂 ‘ 𝐴 )  ∥  𝑁  ↔  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  =  0 ) ) | 
						
							| 8 | 5 6 7 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( 𝑂 ‘ 𝐴 )  ∥  𝑁  ↔  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  =  0 ) ) | 
						
							| 9 |  | simpl2 | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  𝐴  ∈  𝑋 ) | 
						
							| 10 | 1 4 3 | mulg0 | ⊢ ( 𝐴  ∈  𝑋  →  ( 0  ·  𝐴 )  =   0  ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( 0  ·  𝐴 )  =   0  ) | 
						
							| 12 |  | oveq1 | ⊢ ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  =  0  →  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  =  ( 0  ·  𝐴 ) ) | 
						
							| 13 | 12 | eqeq1d | ⊢ ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  =  0  →  ( ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  =   0   ↔  ( 0  ·  𝐴 )  =   0  ) ) | 
						
							| 14 | 11 13 | syl5ibrcom | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  =  0  →  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  =   0  ) ) | 
						
							| 15 | 6 | zred | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  𝑁  ∈  ℝ ) | 
						
							| 16 | 5 | nnrpd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℝ+ ) | 
						
							| 17 |  | modlt | ⊢ ( ( 𝑁  ∈  ℝ  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℝ+ )  →  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  <  ( 𝑂 ‘ 𝐴 ) ) | 
						
							| 18 | 15 16 17 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  <  ( 𝑂 ‘ 𝐴 ) ) | 
						
							| 19 | 6 5 | zmodcld | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ∈  ℕ0 ) | 
						
							| 20 | 19 | nn0red | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 21 | 5 | nnred | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 22 | 20 21 | ltnled | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  <  ( 𝑂 ‘ 𝐴 )  ↔  ¬  ( 𝑂 ‘ 𝐴 )  ≤  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) ) ) ) | 
						
							| 23 | 18 22 | mpbid | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ¬  ( 𝑂 ‘ 𝐴 )  ≤  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) ) ) | 
						
							| 24 | 1 2 3 4 | odlem2 | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ∈  ℕ  ∧  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  =   0  )  →  ( 𝑂 ‘ 𝐴 )  ∈  ( 1 ... ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) ) ) ) | 
						
							| 25 |  | elfzle2 | ⊢ ( ( 𝑂 ‘ 𝐴 )  ∈  ( 1 ... ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) ) )  →  ( 𝑂 ‘ 𝐴 )  ≤  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ∈  ℕ  ∧  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  =   0  )  →  ( 𝑂 ‘ 𝐴 )  ≤  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) ) ) | 
						
							| 27 | 26 | 3com23 | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  =   0   ∧  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ∈  ℕ )  →  ( 𝑂 ‘ 𝐴 )  ≤  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) ) ) | 
						
							| 28 | 27 | 3expia | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  =   0  )  →  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ∈  ℕ  →  ( 𝑂 ‘ 𝐴 )  ≤  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) ) ) ) | 
						
							| 29 | 28 | con3d | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  =   0  )  →  ( ¬  ( 𝑂 ‘ 𝐴 )  ≤  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  →  ¬  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ∈  ℕ ) ) | 
						
							| 30 | 29 | impancom | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ¬  ( 𝑂 ‘ 𝐴 )  ≤  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) ) )  →  ( ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  =   0   →  ¬  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ∈  ℕ ) ) | 
						
							| 31 | 9 23 30 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  =   0   →  ¬  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ∈  ℕ ) ) | 
						
							| 32 |  | elnn0 | ⊢ ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ∈  ℕ0  ↔  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ∈  ℕ  ∨  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  =  0 ) ) | 
						
							| 33 | 19 32 | sylib | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ∈  ℕ  ∨  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  =  0 ) ) | 
						
							| 34 | 33 | ord | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ¬  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ∈  ℕ  →  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  =  0 ) ) | 
						
							| 35 | 31 34 | syld | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  =   0   →  ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  =  0 ) ) | 
						
							| 36 | 14 35 | impbid | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  =  0  ↔  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  =   0  ) ) | 
						
							| 37 | 1 2 3 4 | odmod | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  =  ( 𝑁  ·  𝐴 ) ) | 
						
							| 38 | 37 | eqeq1d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( ( 𝑁  mod  ( 𝑂 ‘ 𝐴 ) )  ·  𝐴 )  =   0   ↔  ( 𝑁  ·  𝐴 )  =   0  ) ) | 
						
							| 39 | 8 36 38 | 3bitrd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℕ )  →  ( ( 𝑂 ‘ 𝐴 )  ∥  𝑁  ↔  ( 𝑁  ·  𝐴 )  =   0  ) ) | 
						
							| 40 |  | simpr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( 𝑂 ‘ 𝐴 )  =  0 ) | 
						
							| 41 | 40 | breq1d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( ( 𝑂 ‘ 𝐴 )  ∥  𝑁  ↔  0  ∥  𝑁 ) ) | 
						
							| 42 |  | simpl3 | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  𝑁  ∈  ℤ ) | 
						
							| 43 |  | 0dvds | ⊢ ( 𝑁  ∈  ℤ  →  ( 0  ∥  𝑁  ↔  𝑁  =  0 ) ) | 
						
							| 44 | 42 43 | syl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( 0  ∥  𝑁  ↔  𝑁  =  0 ) ) | 
						
							| 45 |  | simpl2 | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  𝐴  ∈  𝑋 ) | 
						
							| 46 | 45 10 | syl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( 0  ·  𝐴 )  =   0  ) | 
						
							| 47 |  | oveq1 | ⊢ ( 𝑁  =  0  →  ( 𝑁  ·  𝐴 )  =  ( 0  ·  𝐴 ) ) | 
						
							| 48 | 47 | eqeq1d | ⊢ ( 𝑁  =  0  →  ( ( 𝑁  ·  𝐴 )  =   0   ↔  ( 0  ·  𝐴 )  =   0  ) ) | 
						
							| 49 | 46 48 | syl5ibrcom | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( 𝑁  =  0  →  ( 𝑁  ·  𝐴 )  =   0  ) ) | 
						
							| 50 | 1 2 3 4 | odnncl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑁  ≠  0  ∧  ( 𝑁  ·  𝐴 )  =   0  ) )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 51 | 50 | nnne0d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑁  ≠  0  ∧  ( 𝑁  ·  𝐴 )  =   0  ) )  →  ( 𝑂 ‘ 𝐴 )  ≠  0 ) | 
						
							| 52 | 51 | expr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  𝑁  ≠  0 )  →  ( ( 𝑁  ·  𝐴 )  =   0   →  ( 𝑂 ‘ 𝐴 )  ≠  0 ) ) | 
						
							| 53 | 52 | impancom | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑁  ·  𝐴 )  =   0  )  →  ( 𝑁  ≠  0  →  ( 𝑂 ‘ 𝐴 )  ≠  0 ) ) | 
						
							| 54 | 53 | necon4d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑁  ·  𝐴 )  =   0  )  →  ( ( 𝑂 ‘ 𝐴 )  =  0  →  𝑁  =  0 ) ) | 
						
							| 55 | 54 | impancom | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( ( 𝑁  ·  𝐴 )  =   0   →  𝑁  =  0 ) ) | 
						
							| 56 | 49 55 | impbid | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( 𝑁  =  0  ↔  ( 𝑁  ·  𝐴 )  =   0  ) ) | 
						
							| 57 | 41 44 56 | 3bitrd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( ( 𝑂 ‘ 𝐴 )  ∥  𝑁  ↔  ( 𝑁  ·  𝐴 )  =   0  ) ) | 
						
							| 58 | 1 2 | odcl | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 59 | 58 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 60 |  | elnn0 | ⊢ ( ( 𝑂 ‘ 𝐴 )  ∈  ℕ0  ↔  ( ( 𝑂 ‘ 𝐴 )  ∈  ℕ  ∨  ( 𝑂 ‘ 𝐴 )  =  0 ) ) | 
						
							| 61 | 59 60 | sylib | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑂 ‘ 𝐴 )  ∈  ℕ  ∨  ( 𝑂 ‘ 𝐴 )  =  0 ) ) | 
						
							| 62 | 39 57 61 | mpjaodan | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑂 ‘ 𝐴 )  ∥  𝑁  ↔  ( 𝑁  ·  𝐴 )  =   0  ) ) |