Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
odcl.2 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
|
odid.3 |
⊢ · = ( .g ‘ 𝐺 ) |
4 |
|
odid.4 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
5 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |
6 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑁 ∈ ℤ ) |
7 |
|
dvdsval3 |
⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 ) ) |
8 |
5 6 7
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 ) ) |
9 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝐴 ∈ 𝑋 ) |
10 |
1 4 3
|
mulg0 |
⊢ ( 𝐴 ∈ 𝑋 → ( 0 · 𝐴 ) = 0 ) |
11 |
9 10
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 0 · 𝐴 ) = 0 ) |
12 |
|
oveq1 |
⊢ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 0 · 𝐴 ) ) |
13 |
12
|
eqeq1d |
⊢ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 → ( ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 ↔ ( 0 · 𝐴 ) = 0 ) ) |
14 |
11 13
|
syl5ibrcom |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 ) ) |
15 |
6
|
zred |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑁 ∈ ℝ ) |
16 |
5
|
nnrpd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℝ+ ) |
17 |
|
modlt |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℝ+ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) < ( 𝑂 ‘ 𝐴 ) ) |
18 |
15 16 17
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) < ( 𝑂 ‘ 𝐴 ) ) |
19 |
6 5
|
zmodcld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ0 ) |
20 |
19
|
nn0red |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℝ ) |
21 |
5
|
nnred |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
22 |
20 21
|
ltnled |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) < ( 𝑂 ‘ 𝐴 ) ↔ ¬ ( 𝑂 ‘ 𝐴 ) ≤ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) ) |
23 |
18 22
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ¬ ( 𝑂 ‘ 𝐴 ) ≤ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) |
24 |
1 2 3 4
|
odlem2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ ∧ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) ) |
25 |
|
elfzle2 |
⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) → ( 𝑂 ‘ 𝐴 ) ≤ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) |
26 |
24 25
|
syl |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ ∧ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 ) → ( 𝑂 ‘ 𝐴 ) ≤ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) |
27 |
26
|
3com23 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 ∧ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ≤ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) |
28 |
27
|
3expia |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ → ( 𝑂 ‘ 𝐴 ) ≤ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) ) |
29 |
28
|
con3d |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 ) → ( ¬ ( 𝑂 ‘ 𝐴 ) ≤ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) → ¬ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ ) ) |
30 |
29
|
impancom |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ¬ ( 𝑂 ‘ 𝐴 ) ≤ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) → ( ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 → ¬ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ ) ) |
31 |
9 23 30
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 → ¬ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ ) ) |
32 |
|
elnn0 |
⊢ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ0 ↔ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ ∨ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 ) ) |
33 |
19 32
|
sylib |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ ∨ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 ) ) |
34 |
33
|
ord |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ¬ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 ) ) |
35 |
31 34
|
syld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 ) ) |
36 |
14 35
|
impbid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 ↔ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 ) ) |
37 |
1 2 3 4
|
odmod |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 𝑁 · 𝐴 ) ) |
38 |
37
|
eqeq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
39 |
8 36 38
|
3bitrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
40 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑂 ‘ 𝐴 ) = 0 ) |
41 |
40
|
breq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ 0 ∥ 𝑁 ) ) |
42 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → 𝑁 ∈ ℤ ) |
43 |
|
0dvds |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) |
44 |
42 43
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) |
45 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → 𝐴 ∈ 𝑋 ) |
46 |
45 10
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 0 · 𝐴 ) = 0 ) |
47 |
|
oveq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 · 𝐴 ) = ( 0 · 𝐴 ) ) |
48 |
47
|
eqeq1d |
⊢ ( 𝑁 = 0 → ( ( 𝑁 · 𝐴 ) = 0 ↔ ( 0 · 𝐴 ) = 0 ) ) |
49 |
46 48
|
syl5ibrcom |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑁 = 0 → ( 𝑁 · 𝐴 ) = 0 ) ) |
50 |
1 2 3 4
|
odnncl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |
51 |
50
|
nnne0d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) |
52 |
51
|
expr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ≠ 0 ) → ( ( 𝑁 · 𝐴 ) = 0 → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) ) |
53 |
52
|
impancom |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( 𝑁 ≠ 0 → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) ) |
54 |
53
|
necon4d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 → 𝑁 = 0 ) ) |
55 |
54
|
impancom |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ( 𝑁 · 𝐴 ) = 0 → 𝑁 = 0 ) ) |
56 |
49 55
|
impbid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑁 = 0 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
57 |
41 44 56
|
3bitrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
58 |
1 2
|
odcl |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
59 |
58
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
60 |
|
elnn0 |
⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ↔ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∨ ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
61 |
59 60
|
sylib |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∨ ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
62 |
39 57 61
|
mpjaodan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |