Step |
Hyp |
Ref |
Expression |
1 |
|
odcl2.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
odcl2.2 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) |
5 |
1 2 3 4
|
dfod2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) = if ( ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ) , 0 ) ) |
6 |
5
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) = if ( ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ) , 0 ) ) |
7 |
|
simp2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → 𝑋 ∈ Fin ) |
8 |
1 3 4
|
cycsubgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ) ) |
9 |
8
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ( ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ) ) |
10 |
9
|
simpld |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
11 |
1
|
subgss |
⊢ ( ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ ( SubGrp ‘ 𝐺 ) → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ⊆ 𝑋 ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ⊆ 𝑋 ) |
13 |
7 12
|
ssfid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ Fin ) |
14 |
13
|
iftrued |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → if ( ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ) , 0 ) = ( ♯ ‘ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ) ) |
15 |
6 14
|
eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) = ( ♯ ‘ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ) ) |
16 |
1
|
lagsubg |
⊢ ( ( ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ) ∥ ( ♯ ‘ 𝑋 ) ) |
17 |
10 7 16
|
syl2anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ( ♯ ‘ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ) ∥ ( ♯ ‘ 𝑋 ) ) |
18 |
15 17
|
eqbrtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ♯ ‘ 𝑋 ) ) |