| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odcl.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | odcl.2 | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 3 |  | odid.3 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 4 |  | odid.4 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 5 |  | simp3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  ∥  𝑁 )  →  ( 𝑂 ‘ 𝐴 )  ∥  𝑁 ) | 
						
							| 6 |  | dvdszrcl | ⊢ ( ( 𝑂 ‘ 𝐴 )  ∥  𝑁  →  ( ( 𝑂 ‘ 𝐴 )  ∈  ℤ  ∧  𝑁  ∈  ℤ ) ) | 
						
							| 7 | 6 | simprd | ⊢ ( ( 𝑂 ‘ 𝐴 )  ∥  𝑁  →  𝑁  ∈  ℤ ) | 
						
							| 8 | 1 2 3 4 | oddvds | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑂 ‘ 𝐴 )  ∥  𝑁  ↔  ( 𝑁  ·  𝐴 )  =   0  ) ) | 
						
							| 9 | 7 8 | syl3an3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  ∥  𝑁 )  →  ( ( 𝑂 ‘ 𝐴 )  ∥  𝑁  ↔  ( 𝑁  ·  𝐴 )  =   0  ) ) | 
						
							| 10 | 5 9 | mpbid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  ∥  𝑁 )  →  ( 𝑁  ·  𝐴 )  =   0  ) |