Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
odcl.2 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
|
odid.3 |
⊢ · = ( .g ‘ 𝐺 ) |
4 |
|
odid.4 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
5 |
|
simp3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ) → ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ) |
6 |
|
dvdszrcl |
⊢ ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 → ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
7 |
6
|
simprd |
⊢ ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 → 𝑁 ∈ ℤ ) |
8 |
1 2 3 4
|
oddvds |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
9 |
7 8
|
syl3an3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
10 |
5 9
|
mpbid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ) → ( 𝑁 · 𝐴 ) = 0 ) |