Metamath Proof Explorer


Theorem oddvdsi

Description: Any group element is annihilated by any multiple of its order. (Contributed by Stefan O'Rear, 5-Sep-2015) (Revised by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypotheses odcl.1 𝑋 = ( Base ‘ 𝐺 )
odcl.2 𝑂 = ( od ‘ 𝐺 )
odid.3 · = ( .g𝐺 )
odid.4 0 = ( 0g𝐺 )
Assertion oddvdsi ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ( 𝑂𝐴 ) ∥ 𝑁 ) → ( 𝑁 · 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 odcl.1 𝑋 = ( Base ‘ 𝐺 )
2 odcl.2 𝑂 = ( od ‘ 𝐺 )
3 odid.3 · = ( .g𝐺 )
4 odid.4 0 = ( 0g𝐺 )
5 simp3 ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ( 𝑂𝐴 ) ∥ 𝑁 ) → ( 𝑂𝐴 ) ∥ 𝑁 )
6 dvdszrcl ( ( 𝑂𝐴 ) ∥ 𝑁 → ( ( 𝑂𝐴 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) )
7 6 simprd ( ( 𝑂𝐴 ) ∥ 𝑁𝑁 ∈ ℤ )
8 1 2 3 4 oddvds ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ ) → ( ( 𝑂𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) )
9 7 8 syl3an3 ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ( 𝑂𝐴 ) ∥ 𝑁 ) → ( ( 𝑂𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) )
10 5 9 mpbid ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ( 𝑂𝐴 ) ∥ 𝑁 ) → ( 𝑁 · 𝐴 ) = 0 )