Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
odcl.2 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
|
odid.3 |
⊢ · = ( .g ‘ 𝐺 ) |
4 |
|
odid.4 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
5 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
6 |
1 2 3 4
|
mndodcong |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑁 − 0 ) ↔ ( 𝑁 · 𝐴 ) = ( 0 · 𝐴 ) ) ) |
7 |
6
|
3expia |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0 ) ) → ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑁 − 0 ) ↔ ( 𝑁 · 𝐴 ) = ( 0 · 𝐴 ) ) ) ) |
8 |
5 7
|
mpanr2 |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑁 − 0 ) ↔ ( 𝑁 · 𝐴 ) = ( 0 · 𝐴 ) ) ) ) |
9 |
8
|
3impa |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑁 − 0 ) ↔ ( 𝑁 · 𝐴 ) = ( 0 · 𝐴 ) ) ) ) |
10 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
11 |
10
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
12 |
11
|
subid1d |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 − 0 ) = 𝑁 ) |
13 |
12
|
breq2d |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑁 − 0 ) ↔ ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ) ) |
14 |
1 4 3
|
mulg0 |
⊢ ( 𝐴 ∈ 𝑋 → ( 0 · 𝐴 ) = 0 ) |
15 |
14
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 0 · 𝐴 ) = 0 ) |
16 |
15
|
eqeq2d |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 · 𝐴 ) = ( 0 · 𝐴 ) ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
17 |
13 16
|
bibi12d |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑁 − 0 ) ↔ ( 𝑁 · 𝐴 ) = ( 0 · 𝐴 ) ) ↔ ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) ) |
18 |
9 17
|
sylibd |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) ) |
19 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑂 ‘ 𝐴 ) = 0 ) |
20 |
19
|
breq1d |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ 0 ∥ 𝑁 ) ) |
21 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → 𝑁 ∈ ℕ0 ) |
22 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
23 |
|
0dvds |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) |
24 |
21 22 23
|
3syl |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) |
25 |
15
|
adantr |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 0 · 𝐴 ) = 0 ) |
26 |
|
oveq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 · 𝐴 ) = ( 0 · 𝐴 ) ) |
27 |
26
|
eqeq1d |
⊢ ( 𝑁 = 0 → ( ( 𝑁 · 𝐴 ) = 0 ↔ ( 0 · 𝐴 ) = 0 ) ) |
28 |
25 27
|
syl5ibrcom |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑁 = 0 → ( 𝑁 · 𝐴 ) = 0 ) ) |
29 |
1 2 3 4
|
odlem2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... 𝑁 ) ) |
30 |
29
|
3com23 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑁 · 𝐴 ) = 0 ∧ 𝑁 ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... 𝑁 ) ) |
31 |
|
elfznn |
⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... 𝑁 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |
32 |
|
nnne0 |
⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) |
33 |
30 31 32
|
3syl |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑁 · 𝐴 ) = 0 ∧ 𝑁 ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) |
34 |
33
|
3expia |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( 𝑁 ∈ ℕ → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) ) |
35 |
34
|
3ad2antl2 |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( 𝑁 ∈ ℕ → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) ) |
36 |
35
|
necon2bd |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 → ¬ 𝑁 ∈ ℕ ) ) |
37 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 · 𝐴 ) = 0 ) → 𝑁 ∈ ℕ0 ) |
38 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
39 |
37 38
|
sylib |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
40 |
39
|
ord |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( ¬ 𝑁 ∈ ℕ → 𝑁 = 0 ) ) |
41 |
36 40
|
syld |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 → 𝑁 = 0 ) ) |
42 |
41
|
impancom |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ( 𝑁 · 𝐴 ) = 0 → 𝑁 = 0 ) ) |
43 |
28 42
|
impbid |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑁 = 0 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
44 |
20 24 43
|
3bitrd |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
45 |
44
|
ex |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) ) |
46 |
1 2
|
odcl |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
47 |
46
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
48 |
|
elnn0 |
⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ↔ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∨ ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
49 |
47 48
|
sylib |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∨ ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
50 |
18 45 49
|
mpjaod |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |