| Step |
Hyp |
Ref |
Expression |
| 1 |
|
torsubg.1 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 2 |
|
oddvdssubg.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 3 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ⊆ 𝐵 |
| 4 |
3
|
a1i |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ⊆ 𝐵 ) |
| 5 |
|
fveq2 |
⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ ( 0g ‘ 𝐺 ) ) ) |
| 6 |
5
|
breq1d |
⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 ↔ ( 𝑂 ‘ ( 0g ‘ 𝐺 ) ) ∥ 𝑁 ) ) |
| 7 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → 𝐺 ∈ Grp ) |
| 9 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 10 |
2 9
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 11 |
8 10
|
syl |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 12 |
1 9
|
od1 |
⊢ ( 𝐺 ∈ Grp → ( 𝑂 ‘ ( 0g ‘ 𝐺 ) ) = 1 ) |
| 13 |
8 12
|
syl |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → ( 𝑂 ‘ ( 0g ‘ 𝐺 ) ) = 1 ) |
| 14 |
|
1dvds |
⊢ ( 𝑁 ∈ ℤ → 1 ∥ 𝑁 ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → 1 ∥ 𝑁 ) |
| 16 |
13 15
|
eqbrtrd |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → ( 𝑂 ‘ ( 0g ‘ 𝐺 ) ) ∥ 𝑁 ) |
| 17 |
6 11 16
|
elrabd |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → ( 0g ‘ 𝐺 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) |
| 18 |
17
|
ne0d |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ≠ ∅ ) |
| 19 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝑦 ) ) |
| 20 |
19
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 ↔ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) |
| 21 |
20
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ↔ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝑧 ) ) |
| 23 |
22
|
breq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 ↔ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) |
| 24 |
23
|
elrab |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ↔ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) |
| 25 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 26 |
25
|
breq1d |
⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 ↔ ( 𝑂 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ∥ 𝑁 ) ) |
| 27 |
8
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) → 𝐺 ∈ Grp ) |
| 28 |
27
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → 𝐺 ∈ Grp ) |
| 29 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) → 𝑦 ∈ 𝐵 ) |
| 30 |
29
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → 𝑦 ∈ 𝐵 ) |
| 31 |
|
simprl |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → 𝑧 ∈ 𝐵 ) |
| 32 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 33 |
2 32
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 ) |
| 34 |
28 30 31 33
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 ) |
| 35 |
|
simplll |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → 𝐺 ∈ Abel ) |
| 36 |
|
simpllr |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 37 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
| 38 |
2 37 32
|
mulgdi |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑁 ∈ ℤ ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑁 ( .g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝑁 ( .g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑁 ( .g ‘ 𝐺 ) 𝑧 ) ) ) |
| 39 |
35 36 30 31 38
|
syl13anc |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 𝑁 ( .g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝑁 ( .g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑁 ( .g ‘ 𝐺 ) 𝑧 ) ) ) |
| 40 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) → ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) |
| 41 |
40
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) |
| 42 |
2 1 37 9
|
oddvds |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ↔ ( 𝑁 ( .g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) |
| 43 |
28 30 36 42
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ↔ ( 𝑁 ( .g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) |
| 44 |
41 43
|
mpbid |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 𝑁 ( .g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 45 |
|
simprr |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) |
| 46 |
2 1 37 9
|
oddvds |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝐵 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ↔ ( 𝑁 ( .g ‘ 𝐺 ) 𝑧 ) = ( 0g ‘ 𝐺 ) ) ) |
| 47 |
28 31 36 46
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ↔ ( 𝑁 ( .g ‘ 𝐺 ) 𝑧 ) = ( 0g ‘ 𝐺 ) ) ) |
| 48 |
45 47
|
mpbid |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 𝑁 ( .g ‘ 𝐺 ) 𝑧 ) = ( 0g ‘ 𝐺 ) ) |
| 49 |
44 48
|
oveq12d |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( ( 𝑁 ( .g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑁 ( .g ‘ 𝐺 ) 𝑧 ) ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
| 50 |
28 10
|
syl |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 51 |
2 32 9
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐺 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 52 |
28 50 51
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 53 |
39 49 52
|
3eqtrd |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 𝑁 ( .g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 0g ‘ 𝐺 ) ) |
| 54 |
2 1 37 9
|
oddvds |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐵 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ∥ 𝑁 ↔ ( 𝑁 ( .g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 55 |
28 34 36 54
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( ( 𝑂 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ∥ 𝑁 ↔ ( 𝑁 ( .g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 56 |
53 55
|
mpbird |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 𝑂 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ∥ 𝑁 ) |
| 57 |
26 34 56
|
elrabd |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑧 ) ∥ 𝑁 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) |
| 58 |
24 57
|
sylan2b |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) ∧ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) |
| 59 |
58
|
ralrimiva |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) → ∀ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) |
| 60 |
|
fveq2 |
⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 61 |
60
|
breq1d |
⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) → ( ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 ↔ ( 𝑂 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ∥ 𝑁 ) ) |
| 62 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 63 |
2 62
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) |
| 64 |
27 29 63
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) |
| 65 |
1 62 2
|
odinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( 𝑂 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 𝑂 ‘ 𝑦 ) ) |
| 66 |
27 29 65
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) → ( 𝑂 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 𝑂 ‘ 𝑦 ) ) |
| 67 |
66 40
|
eqbrtrd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) → ( 𝑂 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ∥ 𝑁 ) |
| 68 |
61 64 67
|
elrabd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) |
| 69 |
59 68
|
jca |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑦 ) ∥ 𝑁 ) ) → ( ∀ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) ) |
| 70 |
21 69
|
sylan2b |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) → ( ∀ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) ) |
| 71 |
70
|
ralrimiva |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ( ∀ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) ) |
| 72 |
2 32 62
|
issubg2 |
⊢ ( 𝐺 ∈ Grp → ( { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∈ ( SubGrp ‘ 𝐺 ) ↔ ( { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ⊆ 𝐵 ∧ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ≠ ∅ ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ( ∀ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) ) ) ) |
| 73 |
8 72
|
syl |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → ( { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∈ ( SubGrp ‘ 𝐺 ) ↔ ( { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ⊆ 𝐵 ∧ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ≠ ∅ ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ( ∀ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ) ) ) ) |
| 74 |
4 18 71 73
|
mpbir3and |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∈ ( SubGrp ‘ 𝐺 ) ) |