Metamath Proof Explorer


Theorem oddz

Description: An odd number is an integer. (Contributed by AV, 14-Jun-2020)

Ref Expression
Assertion oddz ( 𝑍 ∈ Odd → 𝑍 ∈ ℤ )

Proof

Step Hyp Ref Expression
1 isodd ( 𝑍 ∈ Odd ↔ ( 𝑍 ∈ ℤ ∧ ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ ) )
2 1 simplbi ( 𝑍 ∈ Odd → 𝑍 ∈ ℤ )